Insert a node in Linked List before a given node
Last Updated :
16 Sep, 2024
Given a linked list, the task is to insert a new node with a specified value into a linked list before a node with a given key.
Examples
Input: head: 1 -> 2 -> 3 -> 4 -> 5 , newData = 6, key = 2
Output: 1 -> 6 -> 2 -> 3 -> 4 -> 5
Explanation: After inserting node with value 6 before (key = 2) of the linked list, the resultant linked list will be: 1 -> 6 -> 2 -> 3 -> 4 -> 5
Input: head: 1 -> 3 -> 2, newData = 9, key = 1
Output: 9 -> 1 -> 3 -> 2
Explanation: After inserting node with value 9 before (key = 1) of the linked list, the resultant linked list will be: 9 -> 1 -> 3 -> 2
[Expected Approach - 1] Using Recursion- O(n) Time and O(n) Space:
The approach involves recursively traversing the linked list to insert a new node before the node with the specified key. The recursive function checks if the current node's data matches the key or not, if it matches it creates a new node with the given value and links this new node before the current node. If the current node does not match the key, the function makes a recursive call to process the next node in the list.
Below is the implementation of the above approach:
C++
// C++ Implementation to insert a node before
// a given key recursively
#include <bits/stdc++.h>
using namespace std;
class Node {
public:
int data;
Node* next;
Node(int x) {
data = x;
next = nullptr;
}
};
// Recursive function to insert a new node with value
// newData before the node with the given key
Node* insertBeforeKey(Node* head, int key, int newData) {
// Base case: if the list is empty
if (head == nullptr) {
return nullptr;
}
// If the head's data matches the key,
// insert new node
if (head->data == key) {
Node* new_node = new Node(newData);
new_node->next = head;
return new_node;
}
// Recursively call for the next node
head->next = insertBeforeKey(head->next, key, newData);
return head;
}
// Function to print the linked list
void printList(Node* node) {
Node* curr = node;
while (curr != nullptr) {
cout << curr->data << " ";
curr = curr->next;
}
}
int main() {
// Create a hard-coded linked list:
// 1 -> 2 -> 3 -> 4 -> 5
Node* head = new Node(1);
head->next = new Node(2);
head->next->next = new Node(3);
head->next->next->next = new Node(4);
head->next->next->next->next = new Node(5);
int newData = 6;
int key = 2;
head = insertBeforeKey(head, key, newData);
printList(head);
return 0;
}
C
// C Implementation to insert a node before
// a given key recursively
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node* next;
};
struct Node* createNode(int x);
// Recursive function to insert a new node with value
// newData before the node with the given key
struct Node* insertBeforeKey(struct Node* head,
int key, int newData) {
// Base case: if the list is empty
if (head == NULL) {
return NULL;
}
// If head's data matches the key, insert new node
if (head->data == key) {
struct Node* newNode = createNode(newData);
newNode->next = head;
return newNode;
}
// Recursively call insertBeforeKey for the next node
head->next = insertBeforeKey(head->next, key, newData);
return head;
}
void printList(struct Node* node) {
struct Node* curr = node;
while (curr != NULL) {
printf("%d ", curr->data);
curr = curr->next;
}
printf("\n");
}
struct Node* createNode(int x) {
struct Node* new_node =
(struct Node*)malloc(sizeof(struct Node));
new_node->data = x;
new_node->next = NULL;
return new_node;
}
int main() {
// Create a hard-coded linked list:
// 1 -> 2 -> 3 -> 4 -> 5
struct Node* head = createNode(1);
head->next = createNode(2);
head->next->next = createNode(3);
head->next->next->next = createNode(4);
head->next->next->next->next = createNode(5);
int newData = 6;
int key = 2;
head = insertBeforeKey(head, key, newData);
printList(head);
return 0;
}
Java
// Java Implementation to insert a node before
// a given key recursively
class Node {
int data;
Node next;
Node(int x) {
data = x;
next = null;
}
}
public class GfG {
// Recursive function to insert a new node
// with value newData before the node with the key
static Node insertBeforeKey(Node head, int key,
int newData) {
// Base case: if the list is empty
if (head == null) {
return null;
}
// If head's data matches the key, insert new node
if (head.data == key) {
Node newNode = new Node(newData);
newNode.next = head;
return newNode;
}
// Recursively call insertBeforeKey for the next node
head.next = insertBeforeKey(head.next, key, newData);
return head;
}
static void printList(Node node) {
Node curr = node;
while (curr != null) {
System.out.print(curr.data + " ");
curr = curr.next;
}
System.out.println();
}
public static void main(String[] args) {
// Create a hard-coded linked list:
// 1 -> 2 -> 3 -> 4 -> 5
Node head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(4);
head.next.next.next.next = new Node(5);
int newData = 6;
int key = 2;
head = insertBeforeKey(head, key, newData);
printList(head);
}
}
Python
# Python Implementation to insert a node before
# a given key recursively
class Node:
def __init__(self, x):
self.data = x
self.next = None
# Recursive function to insert a new node with value
# newData before the node with the given key
def insert_before_key(head, key, newData):
# Base case: if the list is empty
if head is None:
return None
# If head's data matches the key, insert new node
if head.data == key:
new_node = Node(newData)
new_node.next = head
return new_node
# Recursively call insert_before_key for the next node
head.next = insert_before_key(head.next, key, newData)
return head
def print_list(node):
curr = node
while curr is not None:
print(curr.data, end=" ")
curr = curr.next
print()
if __name__ == "__main__":
# Create a hard-coded linked list:
# 1 -> 2 -> 3 -> 4 -> 5
head = Node(1)
head.next = Node(2)
head.next.next = Node(3)
head.next.next.next = Node(4)
head.next.next.next.next = Node(5)
newData = 6
key = 2
head = insert_before_key(head, key, newData)
print_list(head)
C#
// C# Implementation to insert a node before
// a given key recursively
using System;
class Node {
public int Data;
public Node next;
public Node(int x) {
Data = x;
next = null;
}
}
class GfG {
// Recursive function to insert a new node with value
// newData before the node with the given key
static Node InsertBeforeKey(Node head, int key,
int newData) {
// Base case: if the list is empty
if (head == null) {
return null;
}
// If head's data matches the key, insert new node
if (head.Data == key) {
Node newNode = new Node(newData);
newNode.next = head;
return newNode;
}
// Recursively call InsertBeforeKey for the next node
head.next = InsertBeforeKey(head.next, key, newData);
return head;
}
static void PrintList(Node node) {
Node curr = node;
while (curr != null) {
Console.Write(curr.Data + " ");
curr = curr.next;
}
Console.WriteLine();
}
static void Main() {
// Create a hard-coded linked list:
// 1 -> 2 -> 3 -> 4 -> 5
Node head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(4);
head.next.next.next.next = new Node(5);
int newData = 6;
int key = 2;
head = InsertBeforeKey(head, key, newData);
PrintList(head);
}
}
JavaScript
// Javascript Implementation to insert a node before
// a given key recursively
class Node {
constructor(x) {
this.data = x;
this.next = null;
}
}
// Recursive function to insert a new node with value
// newData before the node with the given key
function insertBeforeKey(head, key, newData) {
// Base case: if the list is empty
if (head === null) {
return null;
}
// If head's data matches the key, create new node
if (head.data === key) {
const newNode = new Node(newData);
newNode.next = head;
return newNode;
}
// Recursively call insertBeforeKey for the next node
head.next = insertBeforeKey(head.next, key, newData);
return head;
}
function printList(node) {
let curr = node;
let output = "";
while (curr !== null) {
output += curr.data + " ";
curr = curr.next;
}
console.log(output.trim());
}
// Create a hard-coded linked list:
// 1 -> 2 -> 3 -> 4 -> 5
let head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(4);
head.next.next.next.next = new Node(5);
let key = 2;
let newData = 6;
head = insertBeforeKey(head, key, newData);
printList(head);
Time Complexity: O(n), where n is the number of nodes in the list.
Auxiliary Space: O(n)
[Expected Approach - 2] Using Iteration - O(n) Time and O(1) Space:
The approach involves iteratively traversing the linked list to insert a new node before the node with the specified key. If the key is at the head of the list, a new node with the given value is created and set as the new head, with its next pointer linking to the previous head. If the key is not at the head, traverse the list using prev and curr pointers. curr will be used to traverse the nodes one by one while prev tracks the node just before curr. When curr points to the node with the key, insert new node between prev and curr.
Below is the implementation of the above approach:
C++
// C++ Implementation to insert a node before
// a given key using iteration
#include <bits/stdc++.h>
using namespace std;
class Node {
public:
int data;
Node* next;
Node(int x) {
data = x;
next = nullptr;
}
};
// Iterative function to insert a new node with value
// newData before the node with the given key
Node* insertBeforeKey(Node* head, int key, int newData) {
// If the list is empty
if (head == nullptr) {
return nullptr;
}
// Special case: if the key is at the head
if (head->data == key) {
Node* new_node = new Node(newData);
new_node->next = head;
return new_node;
}
// Initialize current and previous pointers
Node* curr = head;
Node* prev = nullptr;
// Traverse the list to find the key
while (curr != nullptr && curr->data != key) {
prev = curr;
curr = curr->next;
}
// If the key was found
if (curr != nullptr) {
Node* new_node = new Node(newData);
prev->next = new_node;
new_node->next = curr;
}
return head;
}
void printList(Node* node) {
Node* curr = node;
while (curr != nullptr) {
cout << curr->data << " ";
curr = curr->next;
}
cout << endl;
}
int main() {
// Create a hard-coded linked list:
// 1 -> 2 -> 3 -> 4 -> 5
Node* head = new Node(1);
head->next = new Node(2);
head->next->next = new Node(3);
head->next->next->next = new Node(4);
head->next->next->next->next = new Node(5);
int newData = 6;
int key = 2;
head = insertBeforeKey(head, key, newData);
printList(head);
return 0;
}
C
// C Implementation to insert a node before
// a given key using iteration
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node* next;
};
struct Node* createNode(int x);
// Iterative function to insert a new node with value
// newData before the node with the given key
struct Node* insertBeforeKey(struct Node* head, int key,
int newData) {
// Special case: if the key is at the head
if (head == NULL) {
return NULL;
}
if (head->data == key) {
struct Node* newNode = createNode(newData);
newNode->next = head;
return newNode;
}
// Initialize current and previous pointers
struct Node* curr = head;
struct Node* prev = NULL;
// Traverse the list to find the key
while (curr != NULL && curr->data != key) {
prev = curr;
curr = curr->next;
}
// If the key was found
if (curr != NULL) {
struct Node* newNode = createNode(newData);
prev->next = newNode;
newNode->next = curr;
}
return head;
}
void printList(struct Node* node) {
struct Node* curr = node;
while (curr != NULL) {
printf("%d ", curr->data);
curr = curr->next;
}
printf("\n");
}
struct Node* createNode(int x) {
struct Node* new_node
= (struct Node*)malloc(sizeof(struct Node));
new_node->data = x;
new_node->next = NULL;
return new_node;
}
int main() {
// Create a hard-coded linked list:
// 1 -> 2 -> 3 -> 4 -> 5
struct Node* head = createNode(1);
head->next = createNode(2);
head->next->next = createNode(3);
head->next->next->next = createNode(4);
head->next->next->next->next = createNode(5);
int newData = 6;
int key = 2;
head = insertBeforeKey(head, key, newData);
printList(head);
return 0;
}
Java
// Java Implementation to insert a node before
// a given key using iteration
class Node {
int data;
Node next;
Node(int x) {
data = x;
next = null;
}
}
public class GfG {
// Iterative function to insert a new node with value
// newData before the node with the key
static Node insertBeforeKey(Node head, int key,
int newData) {
// Special case: if the key is at the head
if (head == null) {
return null;
}
if (head.data == key) {
Node newNode = new Node(newData);
newNode.next = head;
return newNode;
}
// Initialize current and previous pointers
Node curr = head;
Node prev = null;
// Traverse the list to find the key
while (curr != null && curr.data != key) {
prev = curr;
curr = curr.next;
}
// If the key was found
if (curr != null) {
Node newNode = new Node(newData);
prev.next = newNode;
newNode.next = curr;
}
return head;
}
static void printList(Node node) {
Node curr = node;
while (curr != null) {
System.out.print(curr.data + " ");
curr = curr.next;
}
System.out.println();
}
public static void main(String[] args) {
// Create a hard-coded linked list:
// 1 -> 2 -> 3 -> 4 -> 5
Node head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(4);
head.next.next.next.next = new Node(5);
int newData = 6;
int key = 2;
head = insertBeforeKey(head, key, newData);
printList(head);
}
}
Python
# Python Implementation to insert a node before
# a given key using iteration
class Node:
def __init__(self, x):
self.data = x
self.next = None
# Iterative function to insert a new node with value
# newData before the node with the given key
def insert_before_key(head, key, newData):
# Special case: if the key is at the head
if head is None:
return None
# If the head's data matches the key, create
# and insert new node as the new head
if head.data == key:
new_node = Node(newData)
new_node.next = head
return new_node
# Initialize pointers
prev = None
curr = head
# Traverse the list to find the key
while curr is not None and curr.data != key:
prev = curr
curr = curr.next
# If the key was found
if curr is not None:
new_node = Node(newData)
prev.next = new_node
new_node.next = curr
return head
def print_list(node):
curr = node
while curr is not None:
print(curr.data, end=" ")
curr = curr.next
print()
if __name__ == "__main__":
# Create a hard-coded linked list:
# 1 -> 2 -> 3 -> 4 -> 5
head = Node(1)
head.next = Node(2)
head.next.next = Node(3)
head.next.next.next = Node(4)
head.next.next.next.next = Node(5)
newData = 6
key = 2
head = insert_before_key(head, key, newData)
print_list(head)
C#
// C# Implementation to insert a node before
// a given key using iteration
using System;
class Node {
public int Data;
public Node next;
public Node(int x) {
Data = x;
next = null;
}
}
class GfG {
// Iterative function to insert a new node with value
// newData before the node with the given key
static Node InsertBeforeKey(Node head, int key,
int newData) {
// Special case: if the key is at the head
if (head == null) {
return null;
}
// If the head's data matches the key, create
// a new node and insert it as the new head
if (head.Data == key) {
Node newNode = new Node(newData);
newNode.next = head;
return newNode;
}
// Initialize pointers
Node prev = null;
Node curr = head;
// Traverse the list to find the key
while (curr != null && curr.Data != key) {
prev = curr;
curr = curr.next;
}
// If the key was found
if (curr != null) {
Node newNode = new Node(newData);
prev.next = newNode;
newNode.next = curr;
}
return head;
}
static void PrintList(Node node) {
Node curr = node;
while (curr != null) {
Console.Write(curr.Data + " ");
curr = curr.next;
}
Console.WriteLine();
}
static void Main() {
// Create a hard-coded linked list:
// 1 -> 2 -> 3 -> 4 -> 5
Node head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(4);
head.next.next.next.next = new Node(5);
int newData = 6;
int key = 2;
head = InsertBeforeKey(head, key, newData);
PrintList(head);
}
}
JavaScript
// Javascript Implementation to insert a node before
// a given key using iteration
class Node {
constructor(x) {
this.data = x;
this.next = null;
}
}
// Iterative function to insert a new node with value
// newData before the node with the given key
function insertBeforeKey(head, key, newData) {
// Special case: if the key is at the head
if (head === null) {
return null;
}
// If the head's data matches the key, create
// new node and insert it as the new head
if (head.data === key) {
const newNode = new Node(newData);
newNode.next = head;
return newNode;
}
// Initialize pointers
let prev = null;
let curr = head;
// Traverse the list to find the key
while (curr !== null && curr.data !== key) {
prev = curr;
curr = curr.next;
}
// If the key was found
if (curr !== null) {
const newNode = new Node(newData);
prev.next = newNode;
newNode.next = curr;
}
return head;
}
function printList(node) {
let curr = node;
let output = "";
while (curr !== null) {
output += curr.data + " ";
curr = curr.next;
}
console.log(output.trim());
}
// Create a hard-coded linked list:
// 1 -> 2 -> 3 -> 4 -> 5
let head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(4);
head.next.next.next.next = new Node(5);
let key = 2;
let newData = 6;
head = insertBeforeKey(head, key, newData);
printList(head);
Time Complexity: O(n), where n is the number of nodes in the linked list.
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem