Form minimum number from given sequence
Last Updated :
23 Jul, 2025
Auxiliary Given a pattern containing only I's and D's. I for increasing and D for decreasing. Device an algorithm to print the minimum number following that pattern. Digits from 1-9 and digits can’t repeat.
Examples:
Input: D Output: 21
Input: I Output: 12
Input: DD Output: 321
Input: II Output: 123
Input: DIDI Output: 21435
Input: IIDDD Output: 126543
Input: DDIDDIID Output: 321654798
Source: Amazon Interview Question
Below are some important observations
Since digits can't repeat, there can be at most 9 digits in output.
Also, number of digits in output is one more than number of characters in input. Note that the first character of input corresponds to two digits in output.
Idea is to iterate over input array and keep track of last printed digit and maximum digit printed so far.
Steps were to follow to solve this problem:
- Create a static function named "PrintMinNumberForPattern" that takes a string array arr as input.
- Create two variables "curr_max" and "last_entry" and initialize them to 0.
- Traverse through the input array arr using a for a loop.
- Create a variable "noOfNextD" and initialize it to 0.
- If the character at index i is 'I', perform the following steps:
- Find the number of next consecutive D's available by iterating over the array from the next index until a non-'D' character is encountered.
- If i is 0, set curr_max to noOfNextD+2 and print the incremented sequence from 1.
- If i is not 0, set curr_max to curr_max + noOfNextD + 1 and print the digit for 'I'.
- For all next consecutive 'D' characters, print the decremented sequence.
- If the character at index i is 'D', perform the following steps:
- If i is 0, find the number of the next consecutive 'D' characters available and set curr_max to noOfNextD+2. Print the first two digits (curr_max and curr_max-1).
- If i is not 0, print the decremented value of last_entry.
- Print a newline character after the for loop completes.
Below is the implementation of the above idea:
C++
// C++ program to print minimum number that can be formed
// from a given sequence of Is and Ds
#include <bits/stdc++.h>
using namespace std;
// Prints the minimum number that can be formed from
// input sequence of I's and D's
void PrintMinNumberForPattern(string arr)
{
// Initialize current_max (to make sure that
// we don't use repeated character
int curr_max = 0;
// Initialize last_entry (Keeps track for
// last printed digit)
int last_entry = 0;
int j;
// Iterate over input array
for (int i=0; i<arr.length(); i++)
{
// Initialize 'noOfNextD' to get count of
// next D's available
int noOfNextD = 0;
switch(arr[i])
{
case 'I':
// If letter is 'I'
// Calculate number of next consecutive D's
// available
j = i+1;
while (arr[j] == 'D' && j < arr.length())
{
noOfNextD++;
j++;
}
if (i==0)
{
curr_max = noOfNextD + 2;
// If 'I' is first letter, print incremented
// sequence from 1
cout << " " << ++last_entry;
cout << " " << curr_max;
// Set max digit reached
last_entry = curr_max;
}
else
{
// If not first letter
// Get next digit to print
curr_max = curr_max + noOfNextD + 1;
// Print digit for I
last_entry = curr_max;
cout << " " << last_entry;
}
// For all next consecutive 'D' print
// decremented sequence
for (int k=0; k<noOfNextD; k++)
{
cout << " " << --last_entry;
i++;
}
break;
// If letter is 'D'
case 'D':
if (i == 0)
{
// If 'D' is first letter in sequence
// Find number of Next D's available
j = i+1;
while (arr[j] == 'D' && j < arr.length())
{
noOfNextD++;
j++;
}
// Calculate first digit to print based on
// number of consecutive D's
curr_max = noOfNextD + 2;
// Print twice for the first time
cout << " " << curr_max << " " << curr_max - 1;
// Store last entry
last_entry = curr_max - 1;
}
else
{
// If current 'D' is not first letter
// Decrement last_entry
cout << " " << last_entry - 1;
last_entry--;
}
break;
}
}
cout << endl;
}
// Driver program to test above
int main()
{
PrintMinNumberForPattern("IDID");
PrintMinNumberForPattern("I");
PrintMinNumberForPattern("DD");
PrintMinNumberForPattern("II");
PrintMinNumberForPattern("DIDI");
PrintMinNumberForPattern("IIDDD");
PrintMinNumberForPattern("DDIDDIID");
return 0;
}
Java
// Java program to print minimum number that can be formed
// from a given sequence of Is and Ds
class GFG
{
// Prints the minimum number that can be formed from
// input sequence of I's and D's
static void PrintMinNumberForPattern(String arr)
{
// Initialize current_max (to make sure that
// we don't use repeated character
int curr_max = 0;
// Initialize last_entry (Keeps track for
// last printed digit)
int last_entry = 0;
int j;
// Iterate over input array
for (int i = 0; i < arr.length(); i++)
{
// Initialize 'noOfNextD' to get count of
// next D's available
int noOfNextD = 0;
switch (arr.charAt(i))
{
case 'I':
// If letter is 'I'
// Calculate number of next consecutive D's
// available
j = i + 1;
while (j < arr.length() && arr.charAt(j) == 'D')
{
noOfNextD++;
j++;
}
if (i == 0)
{
curr_max = noOfNextD + 2;
// If 'I' is first letter, print incremented
// sequence from 1
System.out.print(" " + ++last_entry);
System.out.print(" " + curr_max);
// Set max digit reached
last_entry = curr_max;
}
else
{
// If not first letter
// Get next digit to print
curr_max = curr_max + noOfNextD + 1;
// Print digit for I
last_entry = curr_max;
System.out.print(" " + last_entry);
}
// For all next consecutive 'D' print
// decremented sequence
for (int k = 0; k < noOfNextD; k++)
{
System.out.print(" " + --last_entry);
i++;
}
break;
// If letter is 'D'
case 'D':
if (i == 0)
{
// If 'D' is first letter in sequence
// Find number of Next D's available
j = i + 1;
while (j < arr.length()&&arr.charAt(j) == 'D')
{
noOfNextD++;
j++;
}
// Calculate first digit to print based on
// number of consecutive D's
curr_max = noOfNextD + 2;
// Print twice for the first time
System.out.print(" " + curr_max + " " + (curr_max - 1));
// Store last entry
last_entry = curr_max - 1;
}
else
{
// If current 'D' is not first letter
// Decrement last_entry
System.out.print(" " + (last_entry - 1));
last_entry--;
}
break;
}
}
System.out.println();
}
// Driver code
public static void main(String[] args)
{
PrintMinNumberForPattern("IDID");
PrintMinNumberForPattern("I");
PrintMinNumberForPattern("DD");
PrintMinNumberForPattern("II");
PrintMinNumberForPattern("DIDI");
PrintMinNumberForPattern("IIDDD");
PrintMinNumberForPattern("DDIDDIID");
}
}
// This code is contributed by Princi Singh
Python3
# Python3 program to print minimum number that
# can be formed from a given sequence of Is and Ds
# Prints the minimum number that can be formed from
# input sequence of I's and D's
def PrintMinNumberForPattern(arr):
# Initialize current_max (to make sure that
# we don't use repeated character
curr_max = 0
# Initialize last_entry (Keeps track for
# last printed digit)
last_entry = 0
i = 0
# Iterate over input array
while i < len(arr):
# Initialize 'noOfNextD' to get count of
# next D's available
noOfNextD = 0
if arr[i] == "I":
# If letter is 'I'
# Calculate number of next consecutive D's
# available
j = i + 1
while j < len(arr) and arr[j] == "D":
noOfNextD += 1
j += 1
if i == 0:
curr_max = noOfNextD + 2
last_entry += 1
# If 'I' is first letter, print incremented
# sequence from 1
print("", last_entry, end = "")
print("", curr_max, end = "")
# Set max digit reached
last_entry = curr_max
else:
# If not first letter
# Get next digit to print
curr_max += noOfNextD + 1
# Print digit for I
last_entry = curr_max
print("", last_entry, end = "")
# For all next consecutive 'D' print
# decremented sequence
for k in range(noOfNextD):
last_entry -= 1
print("", last_entry, end = "")
i += 1
# If letter is 'D'
elif arr[i] == "D":
if i == 0:
# If 'D' is first letter in sequence
# Find number of Next D's available
j = i + 1
while j < len(arr) and arr[j] == "D":
noOfNextD += 1
j += 1
# Calculate first digit to print based on
# number of consecutive D's
curr_max = noOfNextD + 2
# Print twice for the first time
print("", curr_max, curr_max - 1, end = "")
# Store last entry
last_entry = curr_max - 1
else:
# If current 'D' is not first letter
# Decrement last_entry
print("", last_entry - 1, end = "")
last_entry -= 1
i += 1
print()
# Driver code
if __name__ == "__main__":
PrintMinNumberForPattern("IDID")
PrintMinNumberForPattern("I")
PrintMinNumberForPattern("DD")
PrintMinNumberForPattern("II")
PrintMinNumberForPattern("DIDI")
PrintMinNumberForPattern("IIDDD")
PrintMinNumberForPattern("DDIDDIID")
# This code is contributed by
# sanjeev2552
C#
// C# program to print minimum number that can be formed
// from a given sequence of Is and Ds
using System;
class GFG
{
// Prints the minimum number that can be formed from
// input sequence of I's and D's
static void PrintMinNumberForPattern(String arr)
{
// Initialize current_max (to make sure that
// we don't use repeated character
int curr_max = 0;
// Initialize last_entry (Keeps track for
// last printed digit)
int last_entry = 0;
int j;
// Iterate over input array
for (int i = 0; i < arr.Length; i++)
{
// Initialize 'noOfNextD' to get count of
// next D's available
int noOfNextD = 0;
switch (arr[i])
{
case 'I':
// If letter is 'I'
// Calculate number of next consecutive D's
// available
j = i + 1;
while (j < arr.Length && arr[j] == 'D')
{
noOfNextD++;
j++;
}
if (i == 0)
{
curr_max = noOfNextD + 2;
// If 'I' is first letter, print incremented
// sequence from 1
Console.Write(" " + ++last_entry);
Console.Write(" " + curr_max);
// Set max digit reached
last_entry = curr_max;
}
else
{
// If not first letter
// Get next digit to print
curr_max = curr_max + noOfNextD + 1;
// Print digit for I
last_entry = curr_max;
Console.Write(" " + last_entry);
}
// For all next consecutive 'D' print
// decremented sequence
for (int k = 0; k < noOfNextD; k++)
{
Console.Write(" " + --last_entry);
i++;
}
break;
// If letter is 'D'
case 'D':
if (i == 0)
{
// If 'D' is first letter in sequence
// Find number of Next D's available
j = i + 1;
while (j < arr.Length&&arr[j] == 'D')
{
noOfNextD++;
j++;
}
// Calculate first digit to print based on
// number of consecutive D's
curr_max = noOfNextD + 2;
// Print twice for the first time
Console.Write(" " + curr_max + " " + (curr_max - 1));
// Store last entry
last_entry = curr_max - 1;
}
else
{
// If current 'D' is not first letter
// Decrement last_entry
Console.Write(" " + (last_entry - 1));
last_entry--;
}
break;
}
}
Console.WriteLine();
}
// Driver code
public static void Main(String[] args)
{
PrintMinNumberForPattern("IDID");
PrintMinNumberForPattern("I");
PrintMinNumberForPattern("DD");
PrintMinNumberForPattern("II");
PrintMinNumberForPattern("DIDI");
PrintMinNumberForPattern("IIDDD");
PrintMinNumberForPattern("DDIDDIID");
}
}
// This code is contributed by Princi Singh
PHP
<?php
// PHP program to print minimum
// number that can be formed
// from a given sequence of
// Is and Ds
// Prints the minimum number
// that can be formed from
// input sequence of I's and D's
function PrintMinNumberForPattern($arr)
{
// Initialize current_max
// (to make sure that
// we don't use repeated
// character
$curr_max = 0;
// Initialize last_entry
// (Keeps track for
// last printed digit)
$last_entry = 0;
$j;
// Iterate over
// input array
for ($i = 0; $i < strlen($arr); $i++)
{
// Initialize 'noOfNextD'
// to get count of
// next D's available
$noOfNextD = 0;
switch($arr[$i])
{
case 'I':
// If letter is 'I'
// Calculate number of
// next consecutive D's
// available
$j = $i + 1;
while ($arr[$j] == 'D' &&
$j < strlen($arr))
{
$noOfNextD++;
$j++;
}
if ($i == 0)
{
$curr_max = $noOfNextD + 2;
// If 'I' is first letter,
// print incremented
// sequence from 1
echo " " , ++$last_entry;
echo " " , $curr_max;
// Set max
// digit reached
$last_entry = $curr_max;
}
else
{
// If not first letter
// Get next digit
// to print
$curr_max = $curr_max +
$noOfNextD + 1;
// Print digit for I
$last_entry = $curr_max;
echo " " , $last_entry;
}
// For all next consecutive 'D'
// print decremented sequence
for ($k = 0; $k < $noOfNextD; $k++)
{
echo " " , --$last_entry;
$i++;
}
break;
// If letter is 'D'
case 'D':
if ($i == 0)
{
// If 'D' is first letter
// in sequence. Find number
// of Next D's available
$j = $i+1;
while (($arr[$j] == 'D') &&
($j < strlen($arr)))
{
$noOfNextD++;
$j++;
}
// Calculate first digit
// to print based on
// number of consecutive D's
$curr_max = $noOfNextD + 2;
// Print twice for
// the first time
echo " " , $curr_max ,
" " ,$curr_max - 1;
// Store last entry
$last_entry = $curr_max - 1;
}
else
{
// If current 'D'
// is not first letter
// Decrement last_entry
echo " " , $last_entry - 1;
$last_entry--;
}
break;
}
}
echo "\n";
}
// Driver Code
PrintMinNumberForPattern("IDID");
PrintMinNumberForPattern("I");
PrintMinNumberForPattern("DD");
PrintMinNumberForPattern("II");
PrintMinNumberForPattern("DIDI");
PrintMinNumberForPattern("IIDDD");
PrintMinNumberForPattern("DDIDDIID");
// This code is contributed by aj_36
?>
JavaScript
<script>
// Javascript program to print minimum number that can be formed
// from a given sequence of Is and Ds
// Prints the minimum number that can be formed from
// input sequence of I's and D's
function PrintMinNumberForPattern(arr)
{
// Initialize current_max (to make sure that
// we don't use repeated character
let curr_max = 0;
// Initialize last_entry (Keeps track for
// last printed digit)
let last_entry = 0;
let j;
// Iterate over input array
for (let i = 0; i < arr.length; i++)
{
// Initialize 'noOfNextD' to get count of
// next D's available
let noOfNextD = 0;
switch (arr[i])
{
case 'I':
// If letter is 'I'
// Calculate number of next consecutive D's
// available
j = i + 1;
while (j < arr.length && arr[j] == 'D')
{
noOfNextD++;
j++;
}
if (i == 0)
{
curr_max = noOfNextD + 2;
// If 'I' is first letter, print incremented
// sequence from 1
document.write(" " + ++last_entry);
document.write(" " + curr_max);
// Set max digit reached
last_entry = curr_max;
}
else
{
// If not first letter
// Get next digit to print
curr_max = curr_max + noOfNextD + 1;
// Print digit for I
last_entry = curr_max;
document.write(" " + last_entry);
}
// For all next consecutive 'D' print
// decremented sequence
for (let k = 0; k < noOfNextD; k++)
{
document.write(" " + --last_entry);
i++;
}
break;
// If letter is 'D'
case 'D':
if (i == 0)
{
// If 'D' is first letter in sequence
// Find number of Next D's available
j = i + 1;
while (j < arr.length && arr[j] == 'D')
{
noOfNextD++;
j++;
}
// Calculate first digit to print based on
// number of consecutive D's
curr_max = noOfNextD + 2;
// Print twice for the first time
document.write(" " + curr_max + " " + (curr_max - 1));
// Store last entry
last_entry = curr_max - 1;
}
else
{
// If current 'D' is not first letter
// Decrement last_entry
document.write(" " + (last_entry - 1));
last_entry--;
}
break;
}
}
document.write("<br>");
}
// Driver code
PrintMinNumberForPattern("IDID");
PrintMinNumberForPattern("I");
PrintMinNumberForPattern("DD");
PrintMinNumberForPattern("II");
PrintMinNumberForPattern("DIDI");
PrintMinNumberForPattern("IIDDD");
PrintMinNumberForPattern("DDIDDIID");
// This code is contributed by ab2127
</script>
Output 1 3 2 5 4
1 2
3 2 1
1 2 3
2 1 4 3 5
1 2 6 5 4 3
3 2 1 6 5 4 7 9 8
Time Complexity: O(N^2), overall time complexity. Where, N is the length of the string.
Auxiliary Space: O(1).
This solution is suggested by Swapnil Trambake.
Alternate Solution:
Let's observe a few facts in case of a minimum number:
- The digits can't repeat hence there can be 9 digits at most in output.
- To form a minimum number , at every index of the output, we are interested in the minimum number which can be placed at that index.
The idea is to iterate over the entire input array , keeping track of the minimum number (1-9) which can be placed at that position of the output.
The tricky part of course occurs when 'D' is encountered at index other than 0. In such a case we have to track the nearest 'I' to the left of 'D' and increment each number in the output vector by 1 in between 'I' and 'D'.
We cover the base case as follows:
- If the first character of input is 'I' then we append 1 and 2 in the output vector and the minimum available number is set to 3 .The index of most recent 'I' is set to 1.
- If the first character of input is 'D' then we append 2 and 1 in the output vector and the minimum available number is set to 3, and the index of most recent 'I' is set to 0.
Now we iterate the input string from index 1 till its end and:
- If the character scanned is 'I' , a minimum value that has not been used yet is appended to the output vector .We increment the value of minimum no. available and index of most recent 'I' is also updated.
- If the character scanned is 'D' at index i of input array, we append the ith element from output vector in the output and track the nearest 'I' to the left of 'D' and increment each number in the output vector by 1 in between 'I' and 'D'.
Following is the program for the same:
C++
// C++ program to print minimum number that can be formed
// from a given sequence of Is and Ds
#include<bits/stdc++.h>
using namespace std;
void printLeast(string arr)
{
// min_avail represents the minimum number which is
// still available for inserting in the output vector.
// pos_of_I keeps track of the most recent index
// where 'I' was encountered w.r.t the output vector
int min_avail = 1, pos_of_I = 0;
//vector to store the output
vector<int>v;
// cover the base cases
if (arr[0]=='I')
{
v.push_back(1);
v.push_back(2);
min_avail = 3;
pos_of_I = 1;
}
else
{
v.push_back(2);
v.push_back(1);
min_avail = 3;
pos_of_I = 0;
}
// Traverse rest of the input
for (int i=1; i<arr.length(); i++)
{
if (arr[i]=='I')
{
v.push_back(min_avail);
min_avail++;
pos_of_I = i+1;
}
else
{
v.push_back(v[i]);
for (int j=pos_of_I; j<=i; j++)
v[j]++;
min_avail++;
}
}
// print the number
for (int i=0; i<v.size(); i++)
cout << v[i] << " ";
cout << endl;
}
// Driver program to check the above function
int main()
{
printLeast("IDID");
printLeast("I");
printLeast("DD");
printLeast("II");
printLeast("DIDI");
printLeast("IIDDD");
printLeast("DDIDDIID");
return 0;
}
Java
// Java program to print minimum number that can be formed
// from a given sequence of Is and Ds
import java.io.*;
import java.util.*;
public class GFG {
static void printLeast(String arr)
{
// min_avail represents the minimum number which is
// still available for inserting in the output vector.
// pos_of_I keeps track of the most recent index
// where 'I' was encountered w.r.t the output vector
int min_avail = 1, pos_of_I = 0;
//vector to store the output
ArrayList<Integer> al = new ArrayList<>();
// cover the base cases
if (arr.charAt(0) == 'I')
{
al.add(1);
al.add(2);
min_avail = 3;
pos_of_I = 1;
}
else
{
al.add(2);
al.add(1);
min_avail = 3;
pos_of_I = 0;
}
// Traverse rest of the input
for (int i = 1; i < arr.length(); i++)
{
if (arr.charAt(i) == 'I')
{
al.add(min_avail);
min_avail++;
pos_of_I = i + 1;
}
else
{
al.add(al.get(i));
for (int j = pos_of_I; j <= i; j++)
al.set(j, al.get(j) + 1);
min_avail++;
}
}
// print the number
for (int i = 0; i < al.size(); i++)
System.out.print(al.get(i) + " ");
System.out.println();
}
// Driver code
public static void main(String args[])
{
printLeast("IDID");
printLeast("I");
printLeast("DD");
printLeast("II");
printLeast("DIDI");
printLeast("IIDDD");
printLeast("DDIDDIID");
}
}
// This code is contributed by rachana soma
Python3
# Python3 program to print minimum number
# that can be formed from a given sequence
# of Is and Ds
def printLeast(arr):
# min_avail represents the minimum
# number which is still available
# for inserting in the output vector.
# pos_of_I keeps track of the most
# recent index where 'I' was
# encountered w.r.t the output vector
min_avail = 1
pos_of_I = 0
# Vector to store the output
v = []
# Cover the base cases
if (arr[0] == 'I'):
v.append(1)
v.append(2)
min_avail = 3
pos_of_I = 1
else:
v.append(2)
v.append(1)
min_avail = 3
pos_of_I = 0
# Traverse rest of the input
for i in range(1, len(arr)):
if (arr[i] == 'I'):
v.append(min_avail)
min_avail += 1
pos_of_I = i + 1
else:
v.append(v[i])
for j in range(pos_of_I, i + 1):
v[j] += 1
min_avail += 1
# Print the number
print(*v, sep = ' ')
# Driver code
printLeast("IDID")
printLeast("I")
printLeast("DD")
printLeast("II")
printLeast("DIDI")
printLeast("IIDDD")
printLeast("DDIDDIID")
# This code is contributed by avanitrachhadiya2155
C#
// C# program to print minimum number that can be formed
// from a given sequence of Is and Ds
using System;
using System.Collections.Generic;
class GFG
{
static void printLeast(String arr)
{
// min_avail represents the minimum number which is
// still available for inserting in the output vector.
// pos_of_I keeps track of the most recent index
// where 'I' was encountered w.r.t the output vector
int min_avail = 1, pos_of_I = 0;
//vector to store the output
List<int> al = new List<int>();
// cover the base cases
if (arr[0] == 'I')
{
al.Add(1);
al.Add(2);
min_avail = 3;
pos_of_I = 1;
}
else
{
al.Add(2);
al.Add(1);
min_avail = 3;
pos_of_I = 0;
}
// Traverse rest of the input
for (int i = 1; i < arr.Length; i++)
{
if (arr[i] == 'I')
{
al.Add(min_avail);
min_avail++;
pos_of_I = i + 1;
}
else
{
al.Add(al[i]);
for (int j = pos_of_I; j <= i; j++)
al[j] = al[j] + 1;
min_avail++;
}
}
// print the number
for (int i = 0; i < al.Count; i++)
Console.Write(al[i] + " ");
Console.WriteLine();
}
// Driver code
public static void Main(String []args)
{
printLeast("IDID");
printLeast("I");
printLeast("DD");
printLeast("II");
printLeast("DIDI");
printLeast("IIDDD");
printLeast("DDIDDIID");
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// Javascript program to print
// minimum number that can be formed
// from a given sequence of Is and Ds
function printLeast(arr)
{
// min_avail represents the
// minimum number which is
// still available for inserting
// in the output vector.
// pos_of_I keeps track of the
// most recent index
// where 'I' was encountered
// w.r.t the output vector
let min_avail = 1, pos_of_I = 0;
//vector to store the output
let al = [];
// cover the base cases
if (arr[0] == 'I')
{
al.push(1);
al.push(2);
min_avail = 3;
pos_of_I = 1;
}
else
{
al.push(2);
al.push(1);
min_avail = 3;
pos_of_I = 0;
}
// Traverse rest of the input
for (let i = 1; i < arr.length; i++)
{
if (arr[i] == 'I')
{
al.push(min_avail);
min_avail++;
pos_of_I = i + 1;
}
else
{
al.push(al[i]);
for (let j = pos_of_I; j <= i; j++)
al[j] = al[j] + 1;
min_avail++;
}
}
// print the number
for (let i = 0; i < al.length; i++)
document.write(al[i] + " ");
document.write("</br>");
}
printLeast("IDID");
printLeast("I");
printLeast("DD");
printLeast("II");
printLeast("DIDI");
printLeast("IIDDD");
printLeast("DDIDDIID");
</script>
Output1 3 2 5 4
1 2
3 2 1
1 2 3
2 1 4 3 5
1 2 6 5 4 3
3 2 1 6 5 4 7 9 8
Time Complexity: O(N2) ,here N is length of string .
Auxiliary Space: O(N) since N extra space has been taken.
This solution is suggested by Ashutosh Kumar.
Method 3
We can that when we encounter I, we got numbers in increasing order but if we encounter 'D', we want to have numbers in decreasing order. Length of the output string is always one more than the input string. So the loop is from 0 to the length of the string. We have to take numbers from 1-9 so we always push (i+1) to our stack. Then we check what is the resulting character at the specified index.So, there will be two cases which are as follows:-
Case 1: If we have encountered I or we are at the last character of input string, then pop from the stack and add it to the end of the output string until the stack gets empty.
Case 2: If we have encountered D, then we want the numbers in decreasing order. so we just push (i+1) to our stack.
C++
// C++ program to print minimum number that can be formed
// from a given sequence of Is and Ds
#include <bits/stdc++.h>
using namespace std;
// Function to decode the given sequence to construct
// minimum number without repeated digits
void PrintMinNumberForPattern(string seq)
{
// result store output string
string result;
// create an empty stack of integers
stack<int> stk;
// run n+1 times where n is length of input sequence
for (int i = 0; i <= seq.length(); i++)
{
// push number i+1 into the stack
stk.push(i + 1);
// if all characters of the input sequence are
// processed or current character is 'I'
// (increasing)
if (i == seq.length() || seq[i] == 'I')
{
// run till stack is empty
while (!stk.empty())
{
// remove top element from the stack and
// add it to solution
result += to_string(stk.top());
result += " ";
stk.pop();
}
}
}
cout << result << endl;
}
// main function
int main()
{
PrintMinNumberForPattern("IDID");
PrintMinNumberForPattern("I");
PrintMinNumberForPattern("DD");
PrintMinNumberForPattern("II");
PrintMinNumberForPattern("DIDI");
PrintMinNumberForPattern("IIDDD");
PrintMinNumberForPattern("DDIDDIID");
return 0;
}
Java
import java.util.Stack;
// Java program to print minimum number that can be formed
// from a given sequence of Is and Ds
class GFG {
// Function to decode the given sequence to construct
// minimum number without repeated digits
static void PrintMinNumberForPattern(String seq) {
// result store output string
String result = "";
// create an empty stack of integers
Stack<Integer> stk = new Stack<Integer>();
// run n+1 times where n is length of input sequence
for (int i = 0; i <= seq.length(); i++) {
// push number i+1 into the stack
stk.push(i + 1);
// if all characters of the input sequence are
// processed or current character is 'I'
// (increasing)
if (i == seq.length() || seq.charAt(i) == 'I') {
// run till stack is empty
while (!stk.empty()) {
// remove top element from the stack and
// add it to solution
result += String.valueOf(stk.peek());
result += " ";
stk.pop();
}
}
}
System.out.println(result);
}
// main function
public static void main(String[] args) {
PrintMinNumberForPattern("IDID");
PrintMinNumberForPattern("I");
PrintMinNumberForPattern("DD");
PrintMinNumberForPattern("II");
PrintMinNumberForPattern("DIDI");
PrintMinNumberForPattern("IIDDD");
PrintMinNumberForPattern("DDIDDIID");
}
}
// This code is contributed by PrinciRaj1992
Python3
# Python3 program to print minimum
# number that can be formed from a
# given sequence of Is and Ds
def PrintMinNumberForPattern(Strr):
# Take a List to work as Stack
stack = []
# String for storing result
res = ''
# run n+1 times where n is length
# of input sequence, As length of
# result string is always 1 greater
for i in range(len(Strr) + 1):
# Push number i+1 into the stack
stack.append(i + 1)
# If all characters of the input
# sequence are processed or current
# character is 'I
if (i == len(Strr) or Strr[i] == 'I'):
# Run While Loop Until stack is empty
while len(stack) > 0:
# pop the element on top of stack
# And store it in result String
res += str(stack.pop())
res += ' '
# Print the result
print(res)
# Driver Code
PrintMinNumberForPattern("IDID")
PrintMinNumberForPattern("I")
PrintMinNumberForPattern("DD")
PrintMinNumberForPattern("II")
PrintMinNumberForPattern("DIDI")
PrintMinNumberForPattern("IIDDD")
PrintMinNumberForPattern("DDIDDIID")
# This code is contributed by AyushManglani
C#
// C# program to print minimum number that can be formed
// from a given sequence of Is and Ds
using System;
using System.Collections;
public class GFG {
// Function to decode the given sequence to construct
// minimum number without repeated digits
static void PrintMinNumberForPattern(String seq) {
// result store output string
String result = "";
// create an empty stack of integers
Stack stk = new Stack();
// run n+1 times where n is length of input sequence
for (int i = 0; i <= seq.Length; i++) {
// push number i+1 into the stack
stk.Push(i + 1);
// if all characters of the input sequence are
// processed or current character is 'I'
// (increasing)
if (i == seq.Length || seq[i] == 'I') {
// run till stack is empty
while (stk.Count!=0) {
// remove top element from the stack and
// add it to solution
result += String.Join("",stk.Peek());
result += " ";
stk.Pop();
}
}
}
Console.WriteLine(result);
}
// main function
public static void Main() {
PrintMinNumberForPattern("IDID");
PrintMinNumberForPattern("I");
PrintMinNumberForPattern("DD");
PrintMinNumberForPattern("II");
PrintMinNumberForPattern("DIDI");
PrintMinNumberForPattern("IIDDD");
PrintMinNumberForPattern("DDIDDIID");
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// Javascript program to print
// minimum number that can be formed
// from a given sequence of Is and Ds
// Function to decode the given
// sequence to construct
// minimum number without repeated digits
function PrintMinNumberForPattern(seq)
{
// result store output string
let result = "";
// create an empty stack of integers
let stk = [];
// run n+1 times where n is length
// of input sequence
for (let i = 0; i <= seq.length; i++)
{
// push number i+1 into the stack
stk.push(i + 1);
// if all characters of the input
// sequence are
// processed or current character is 'I'
// (increasing)
if (i == seq.length || seq[i] == 'I')
{
// run till stack is empty
while (stk.length!=0) {
// remove top element from
// the stack and
// add it to solution
result +=
(stk[stk.length - 1]).toString();
result += " ";
stk.pop();
}
}
}
document.write(result + "</br>");
}
PrintMinNumberForPattern("IDID");
PrintMinNumberForPattern("I");
PrintMinNumberForPattern("DD");
PrintMinNumberForPattern("II");
PrintMinNumberForPattern("DIDI");
PrintMinNumberForPattern("IIDDD");
PrintMinNumberForPattern("DDIDDIID");
</script>
Output1 3 2 5 4
1 2
3 2 1
1 2 3
2 1 4 3 5
1 2 6 5 4 3
3 2 1 6 5 4 7 9 8
Time Complexity: O(n)
Auxiliary Space: O(n), since n extra space has been taken.
This method is contributed by Roshni Agarwal.
Method 4 (Using two pointers)
Observation
- Since we have to find a minimum number without repeating digits, maximum length of output can be 9 (using each 1-9 digits once)
- Length of the output will be exactly one greater than input length.
- The idea is to iterate over the string and do the following if current character is 'I' or string is ended.
- Assign count in increasing order to each element from current-1 to the next left index of 'I' (or starting index is reached).
- Increase the count by 1.
Input : IDID
Output : 13254
Input : I
Output : 12
Input : DD
Output : 321
Input : II
Output : 123
Input : DIDI
Output : 21435
Input : IIDDD
Output : 126543
Input : DDIDDIID
Output : 321654798
Below is the implementation of above approach:
C++
// C++ program of above approach
#include <bits/stdc++.h>
using namespace std;
// Returns minimum number made from given sequence without repeating digits
string getMinNumberForPattern(string seq)
{
int n = seq.length();
if (n >= 9)
return "-1";
string result(n+1, ' ');
int count = 1;
// The loop runs for each input character as well as
// one additional time for assigning rank to remaining characters
for (int i = 0; i <= n; i++)
{
if (i == n || seq[i] == 'I')
{
for (int j = i - 1 ; j >= -1 ; j--)
{
result[j + 1] = '0' + count++;
if(j >= 0 && seq[j] == 'I')
break;
}
}
}
return result;
}
// main function
int main()
{
string inputs[] = {"IDID", "I", "DD", "II", "DIDI", "IIDDD", "DDIDDIID"};
for (string input : inputs)
{
cout << getMinNumberForPattern(input) << "\n";
}
return 0;
}
Java
// Java program of above approach
import java.io.IOException;
public class Test
{
// Returns minimum number made from given sequence without repeating digits
static String getMinNumberForPattern(String seq)
{
int n = seq.length();
if (n >= 9)
return "-1";
char result[] = new char[n + 1];
int count = 1;
// The loop runs for each input character as well as
// one additional time for assigning rank to each remaining characters
for (int i = 0; i <= n; i++)
{
if (i == n || seq.charAt(i) == 'I')
{
for (int j = i - 1; j >= -1; j--)
{
result[j + 1] = (char) ((int) '0' + count++);
if (j >= 0 && seq.charAt(j) == 'I')
break;
}
}
}
return new String(result);
}
public static void main(String[] args) throws IOException
{
String inputs[] = { "IDID", "I", "DD", "II", "DIDI", "IIDDD", "DDIDDIID" };
for(String input : inputs)
{
System.out.println(getMinNumberForPattern(input));
}
}
}
Python3
# Python3 program of above approach
# Returns minimum number made from
# given sequence without repeating digits
def getMinNumberForPattern(seq):
n = len(seq)
if (n >= 9):
return "-1"
result = [None] * (n + 1)
count = 1
# The loop runs for each input character
# as well as one additional time for
# assigning rank to remaining characters
for i in range(n + 1):
if (i == n or seq[i] == 'I'):
for j in range(i - 1, -2, -1):
result[j + 1] = int('0' + str(count))
count += 1
if(j >= 0 and seq[j] == 'I'):
break
return result
# Driver Code
if __name__ == '__main__':
inputs = ["IDID", "I", "DD", "II",
"DIDI", "IIDDD", "DDIDDIID"]
for Input in inputs:
print(*(getMinNumberForPattern(Input)))
# This code is contributed by PranchalK
C#
// C# program of above approach
using System;
class GFG
{
// Returns minimum number made from given
// sequence without repeating digits
static String getMinNumberForPattern(String seq)
{
int n = seq.Length;
if (n >= 9)
return "-1";
char []result = new char[n + 1];
int count = 1;
// The loop runs for each input character
// as well as one additional time for
// assigning rank to each remaining characters
for (int i = 0; i <= n; i++)
{
if (i == n || seq[i] == 'I')
{
for (int j = i - 1; j >= -1; j--)
{
result[j + 1] = (char) ((int) '0' + count++);
if (j >= 0 && seq[j] == 'I')
break;
}
}
}
return new String(result);
}
// Driver Code
public static void Main()
{
String []inputs = { "IDID", "I", "DD", "II",
"DIDI", "IIDDD", "DDIDDIID" };
foreach(String input in inputs)
{
Console.WriteLine(getMinNumberForPattern(input));
}
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// Javascript program of above approach
// Returns minimum number made from given
// sequence without repeating digits
function getMinNumberForPattern(seq)
{
let n = seq.length;
if (n >= 9)
return "-1";
let result = new Array(n + 1);
let count = 1;
// The loop runs for each input character
// as well as one additional time for
// assigning rank to each remaining characters
for (let i = 0; i <= n; i++)
{
if (i == n || seq[i] == 'I')
{
for (let j = i - 1; j >= -1; j--)
{
result[j + 1] =
String.fromCharCode('0'.charCodeAt() +
count++);
if (j >= 0 && seq[j] == 'I')
break;
}
}
}
return result.join("");
}
let inputs = [ "IDID", "I", "DD", "II", "DIDI",
"IIDDD", "DDIDDIID" ];
for(let input = 0; input < inputs.length; input++)
{
document.write(
getMinNumberForPattern(inputs[input]) + "</br>"
);
}
</script>
Output13254
12
321
123
21435
126543
321654798
Time Complexity: O(N)
Auxiliary Space: O(N), since N extra space has been taken.
This solution is suggested by Brij Desai.
Method 5 (Start with the Smallest)
Start with the smallest number as the answer and keep shifting the digits when we encounter a D.
There is no need to traverse back for the index.
Follow the below steps,
- Start with the smallest number for len(s)+1 (say for DI, start with "123")
- Now, starting with the second digit (index 1) and first character (D), iterate until end of the digits list, keeping track of the first D in a sequence of Ds
- When we encounter a D
move the digit at current index to the first D in the sequence - When we encounter an I
reset the last known location of D. Nothing to move as the digit is correctly placed (as of now...)
Below is the implementation of the above approach:
C++
// c++ program to generate required sequence
#include <iostream>
#include <stdlib.h>
#include <string>
#include <vector>
using namespace std;
//:param s: a seq consisting only of 'D' and 'I' chars. D is
//for decreasing and I for increasing :return: digits from
//1-9 that fit the str. The number they represent should the min
//such number
vector<string> didi_seq_gen(string s)
{
if (s.size() == 0)
return {};
vector<string> base_list = { "1" };
for (int i = 2; i < s.size() + 2; i++)
base_list.push_back(to_string(i));
int last_D = -1;
for (int i = 1; i < base_list.size(); i++) {
if (s[i - 1] == 'D') {
if (last_D < 0)
last_D = i - 1;
string v = base_list[i];
base_list.erase(base_list.begin() + i);
base_list.insert(base_list.begin() + last_D, v);
}
else
last_D = -1;
}
return base_list;
}
int main()
{
vector<string> inputs
= { "IDID", "I", "DD", "II",
"DIDI", "IIDDD", "DDIDDIID" };
for (auto x : inputs) {
vector<string> ans = didi_seq_gen(x);
for (auto i : ans) {
cout << i;
}
cout << endl;
}
return 0;
}
Java
// Java program to generate required sequence
import java.util.*;
public class Main {
public static void main(String[] args)
{
String[] inputs
= { "IDID", "I", "DD", "II",
"DIDI", "IIDDD", "DDIDDIID" };
for (String x : inputs) {
List<String> ans = didi_seq_gen(x);
for (String i : ans) {
System.out.print(i);
}
System.out.println();
}
}
//:param s: a seq consisting only of 'D' and 'I' chars.
//D is for decreasing and I for increasing :return:
// digits from 1-9 that fit the str. The number they represent
// should the min such number
public static List<String> didi_seq_gen(String s)
{
if (s.length() == 0)
return new ArrayList<>();
List<String> base_list
= new ArrayList<>(Arrays.asList("1"));
for (int i = 2; i < s.length() + 2; i++)
base_list.add(Integer.toString(i));
int last_D = -1;
for (int i = 1; i < base_list.size(); i++) {
if (s.charAt(i - 1) == 'D') {
if (last_D < 0)
last_D = i - 1;
String v = base_list.get(i);
base_list.remove(i);
base_list.add(last_D, v);
}
else {
last_D = -1;
}
}
return base_list;
}
}
// This code is contributed by Tapesh (tapeshdua420)
Python3
# Python implementation of the above approach
def didi_seq_gen(s: str):
'''
:param s: a seq consisting only of 'D'
and 'I' chars. D is for decreasing and
I for increasing
:return: digits from 1-9 that fit the str.
The number they represent should the min
such number
:rtype: str
example : for seq DII -> 2134
'''
if not s or len(s) <= 0:
return ""
base_list = ["1"]
for i in range(1, len(s) + 1):
base_list.append(f'{i + 1}')
last_D = -1
for i in range(1, len(base_list)):
if s[i - 1] == 'D':
if last_D < 0:
last_D = i - 1
v = base_list[i]
del base_list[i]
base_list.insert(last_D, v)
else:
last_D = -1
return base_list
# Driver Code
# Function call
print(didi_seq_gen("IDID"))
print(didi_seq_gen("I"))
print(didi_seq_gen("DD"))
print(didi_seq_gen("II"))
print(didi_seq_gen("DIDI"))
print(didi_seq_gen("IIDDD"))
print(didi_seq_gen("DDIDDIID" ))
C#
// Include namespace system
using System;
using System.Collections.Generic;
using System.Linq;
using System.Collections;
public class GFG
{
public static void Main(String[] args)
{
String[] inputs = {"IDID", "I", "DD", "II", "DIDI", "IIDDD", "DDIDDIID"};
foreach (String x in inputs)
{
var ans = GFG.didi_seq_gen(x);
foreach (String i in ans)
{
Console.Write(i);
}
Console.WriteLine();
}
}
// :param s: a seq consisting only of 'D' and 'I' chars.
// D is for decreasing and I for increasing :return:
// digits from 1-9 that fit the str. The number they represent
// should the min such number
public static List<String> didi_seq_gen(String s)
{
if (s.Length == 0)
{
return new List<String>();
}
var base_list = new List<String>();
base_list.Add("1");
for (int i = 2; i < s.Length + 2; i++)
{
base_list.Add(Convert.ToString(i));
}
var last_D = -1;
for (int i = 1; i < base_list.Count; i++)
{
if (s[i - 1] == 'D')
{
if (last_D < 0)
{
last_D = i - 1;
}
var v = base_list[i];
base_list.RemoveAt(i);
base_list.Insert(last_D,v);
}
else
{
last_D = -1;
}
}
return base_list;
}
}
// This code is contributed by aadityaburujwale.
JavaScript
// JavaScript implementation of the above approach
function didi_seq_gen(s)
{
if (!s || s.length <= 0)
return ""
let base_list = ["1"]
for (var i = 1; i <= s.length; i++)
base_list.push((i + 1).toString())
let last_D = -1
for (var i = 1; i < base_list.length; i++)
{
if (s[i - 1] == 'D')
{
if (last_D < 0)
last_D = i - 1
v = base_list[i]
base_list.splice(i, 1)
base_list.splice(last_D, 0, v)
}
else
last_D = -1
}
return base_list.join("")
}
// Driver Code
// Function call
console.log(didi_seq_gen("IDID"))
console.log(didi_seq_gen("I"))
console.log(didi_seq_gen("DD"))
console.log(didi_seq_gen("II"))
console.log(didi_seq_gen("DIDI"))
console.log(didi_seq_gen("IIDDD"))
console.log(didi_seq_gen("DDIDDIID" ))
// This code is contributed by poojaagarwal2.
Output13254
12
321
123
21435
126543
321654798
Time Complexity: O(N)
Auxiliary Space: O(N)
Method 6 : (Space Optimized and modular code of Method 1)
Examples:
Input: "DDDD"
Output: "432156"
For input 1, pattern is like, D -> D -> D -> D
5 4 3 2 1
Input: "DDDII"
Output: "432156"
For input 2, pattern is like, D -> D -> D -> I -> I
4 3 2 1 5 6
Input: "IIDIDIII"
Output: "124365789"
For input 3, pattern is like, I -> I -> D -> I -> D -> I -> I -> I
1 2 4 3 6 5 7 8 9
Approach:
- Think if the string contains only characters 'I' increasing, then there isn't any problem you can just print and keep incrementing.
- Now think if the string contains only characters 'D' increasing, then you somehow have to get the number 'D' characters present from initial point, so that you can start from total count of 'D' and print by decrementing.
- The problem is when you encounter character 'D' after character 'I'. Here somehow you have to get count of 'D' to get the next possible decremental start for 'D' and then print by decrementing until you have encountered all of 'D'.
- Here in this approach the code has been made more modular compared to method 1 of space optimized version.
C++
// This code illustrates to find minimum number following
// pattern with optimized space and modular code.
#include <bits/stdc++.h>
using namespace std;
// This function returns minimum number following
// pattern of increasing or decreasing sequence.
string findMinNumberPattern(string str)
{
string ans = ""; // Minimum number following pattern
int i = 0;
int cur = 1; // cur val following pattern
int dCount = 0; // Count of char 'D'
while (i < str.length()) {
char ch = str[i];
// If 1st ch == 'I', incr and add to ans
if (i == 0 && ch == 'I') {
ans += to_string(cur);
cur++;
}
// If cur char == 'D',
// incr dCount as well, since we always
// start counting for dCount from i+1
if (ch == 'D') {
dCount++;
}
int j = i + 1; // Count 'D' from i+1 index
while (j < str.length()
&& str[j] == 'D') {
dCount++;
j++;
}
int k = dCount; // Store dCount
while (dCount >= 0) {
ans += to_string(cur + dCount);
dCount--;
}
cur += (k + 1); // Manages next cur val
dCount = 0;
i = j;
}
return ans;
}
int main()
{
cout << (findMinNumberPattern("DIDID")) << endl;
cout << (findMinNumberPattern("DIDIII")) << endl;
cout << (findMinNumberPattern("DDDIIDI")) << endl;
cout << (findMinNumberPattern("IDIDIID")) << endl;
cout << (findMinNumberPattern("DIIDIDD")) << endl;
cout << (findMinNumberPattern("IIDIDDD")) << endl;
return 0;
}
// This code is contributed by suresh07.
Java
/*package whatever //do not write package name here */
// This code illustrates to find minimum number following
// pattern with optimized space and modular code.
import java.io.*;
class GFG {
// This function returns minimum number following
// pattern of increasing or decreasing sequence.
public static String findMinNumberPattern(String str)
{
String ans = ""; // Minimum number following pattern
int i = 0;
int cur = 1; // cur val following pattern
int dCount = 0; // Count of char 'D'
while (i < str.length()) {
char ch = str.charAt(i);
// If 1st ch == 'I', incr and add to ans
if (i == 0 && ch == 'I') {
ans += cur;
cur++;
}
// If cur char == 'D',
// incr dCount as well, since we always
// start counting for dCount from i+1
if (ch == 'D') {
dCount++;
}
int j = i + 1; // Count 'D' from i+1 index
while (j < str.length()
&& str.charAt(j) == 'D') {
dCount++;
j++;
}
int k = dCount; // Store dCount
while (dCount >= 0) {
ans += (cur + dCount);
dCount--;
}
cur += (k + 1); // Manages next cur val
dCount = 0;
i = j;
}
return ans;
}
public static void main(String[] args)
{
System.out.println(findMinNumberPattern("DIDID"));
System.out.println(findMinNumberPattern("DIDIII"));
System.out.println(findMinNumberPattern("DDDIIDI"));
System.out.println(findMinNumberPattern("IDIDIID"));
System.out.println(findMinNumberPattern("DIIDIDD"));
System.out.println(findMinNumberPattern("IIDIDDD"));
}
}
// This code is contributed by Arun M
Python3
# This code illustrates to find minimum number following
# pattern with optimized space and modular code.
# This function returns minimum number following
# pattern of increasing or decreasing sequence.
def findMinNumberPattern(Str):
ans = "" # Minimum number following pattern
i = 0
cur = 1 # cur val following pattern
dCount = 0 # Count of char 'D'
while (i < len(Str)) :
ch = Str[i]
# If 1st ch == 'I', incr and add to ans
if (i == 0 and ch == 'I') :
ans += str(cur)
cur+=1
# If cur char == 'D',
# incr dCount as well, since we always
# start counting for dCount from i+1
if (ch == 'D') :
dCount+=1
j = i + 1 # Count 'D' from i+1 index
while (j < len(Str) and Str[j] == 'D') :
dCount+=1
j+=1
k = dCount # Store dCount
while (dCount >= 0) :
ans += str(cur + dCount)
dCount-=1
cur += (k + 1) # Manages next cur val
dCount = 0
i = j
return ans
print(findMinNumberPattern("DIDID"))
print(findMinNumberPattern("DIDIII"))
print(findMinNumberPattern("DDDIIDI"))
print(findMinNumberPattern("IDIDIID"))
print(findMinNumberPattern("DIIDIDD"))
print(findMinNumberPattern("IIDIDDD"))
# This code is contributed by mukesh07.
C#
// This code illustrates to find minimum number following
// pattern with optimized space and modular code.
using System;
class GFG {
// This function returns minimum number following
// pattern of increasing or decreasing sequence.
public static string findMinNumberPattern(string str)
{
string ans = ""; // Minimum number following pattern
int i = 0;
int cur = 1; // cur val following pattern
int dCount = 0; // Count of char 'D'
while (i < str.Length) {
char ch = str[i];
// If 1st ch == 'I', incr and add to ans
if (i == 0 && ch == 'I') {
ans += cur;
cur++;
}
// If cur char == 'D',
// incr dCount as well, since we always
// start counting for dCount from i+1
if (ch == 'D') {
dCount++;
}
int j = i + 1; // Count 'D' from i+1 index
while (j < str.Length
&& str[j] == 'D') {
dCount++;
j++;
}
int k = dCount; // Store dCount
while (dCount >= 0) {
ans += (cur + dCount);
dCount--;
}
cur += (k + 1); // Manages next cur val
dCount = 0;
i = j;
}
return ans;
}
static void Main() {
Console.WriteLine(findMinNumberPattern("DIDID"));
Console.WriteLine(findMinNumberPattern("DIDIII"));
Console.WriteLine(findMinNumberPattern("DDDIIDI"));
Console.WriteLine(findMinNumberPattern("IDIDIID"));
Console.WriteLine(findMinNumberPattern("DIIDIDD"));
Console.WriteLine(findMinNumberPattern("IIDIDDD"));
}
}
// This code is contributed by mukesh07.
JavaScript
<script>
// This code illustrates to find minimum number following
// pattern with optimized space and modular code.
// This function returns minimum number following
// pattern of increasing or decreasing sequence.
function findMinNumberPattern(str)
{
let ans = ""; // Minimum number following pattern
let i = 0;
let cur = 1; // cur val following pattern
let dCount = 0; // Count of char 'D'
while (i < str.length) {
let ch = str[i];
// If 1st ch == 'I', incr and add to ans
if (i == 0 && ch == 'I') {
ans += cur;
cur++;
}
// If cur char == 'D',
// incr dCount as well, since we always
// start counting for dCount from i+1
if (ch == 'D') {
dCount++;
}
let j = i + 1; // Count 'D' from i+1 index
while (j < str.length
&& str[j] == 'D') {
dCount++;
j++;
}
let k = dCount; // Store dCount
while (dCount >= 0) {
ans += (cur + dCount);
dCount--;
}
cur += (k + 1); // Manages next cur val
dCount = 0;
i = j;
}
return ans;
}
document.write(findMinNumberPattern("DIDID")+"<br>");
document.write(findMinNumberPattern("DIDIII")+"<br>");
document.write(findMinNumberPattern("DDDIIDI")+"<br>");
document.write(findMinNumberPattern("IDIDIID")+"<br>");
document.write(findMinNumberPattern("DIIDIDD")+"<br>");
document.write(findMinNumberPattern("IIDIDDD")+"<br>");
// This code is contributed by unknown2108
</script>
Output214365
2143567
43215768
13254687
21354876
12438765
Time Complexity : O(n)
Auxiliary Space : O(1)
Method 7: (Substring Reversals)
The idea is to take the smallest number with len(s)+1 and perform reversals for every substring containing only 'D'.
Follow below steps to solve the problem:
1. Create the smallest possible number of length len(s)+1.
2. Traverse the string (say i).
3. Find the first and last occurrence of 'D' for every substring containing only 'D'.
4. Reverse every such substring and reinitialize first and last occurrence.
C++14
#include <bits/stdc++.h>
using namespace std;
string get_num_seq(string& str_seq)
{
int n=str_seq.length(),start=-1,end=-1;
string ans;
for(int i=1;i<=n+1;i++)
ans.push_back(i+48);
for(int i=0;i<n;i++)
{
if(str_seq[i]=='D')
{
if(start==-1)
start=i;
end=i;
}
else {
if(start!=-1)
reverse(ans.begin()+start,ans.begin()+end+2);
start=-1;
end=-1;
}
}
if(start!=-1)
reverse(ans.begin()+start,ans.begin()+end+2);
return ans;
}
// driver's code
int main()
{
string str_seq="DDIDDIID";
cout<<get_num_seq(str_seq);
return 0;
}
// this code is contributed by prophet1999
Java
// Java code for the above approach
import java.io.*;
class GFG {
public static String getNumSeq(String strSeq)
{
int n = strSeq.length();
int start = -1;
int end = -1;
String ans = "";
for (int i = 1; i <= n + 1; i++) {
ans += String.valueOf(i);
}
for (int i = 0; i < n; i++) {
if (strSeq.charAt(i) == 'D') {
if (start == -1) {
start = i;
}
end = i;
}
else {
if (start != -1) {
ans = reverse(ans, start, end + 2);
}
start = -1;
end = -1;
}
}
if (start != -1) {
ans = reverse(ans, start, end + 2);
}
return ans;
}
public static String reverse(String str, int start,
int end)
{
char[] arr = str.toCharArray();
for (int i = start, j = end - 1; i < j; i++, j--) {
char temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
return new String(arr);
}
public static void main(String[] args)
{
String strSeq = "DDIDDIID";
System.out.println(getNumSeq(strSeq));
}
}
// This code is contributed by lokesh.
Python3
def get_num_seq( str_seq):
n= len(str_seq)
start = -1
end = -1;
ans = "";
for i in range(1, n + 2):
ans += str(i)
for i in range(n):
if(str_seq[i] == 'D'):
if(start == -1):
start=i;
end=i;
else:
if(start != -1):
ans = ans[:start] + ans[start:end+2][::-1] + ans[end+2:]
start = -1;
end = -1;
if(start != -1):
ans = ans[:start] + ans[start:end+2][::-1] + ans[end+2:]
return ans;
# driver's code
str_seq="DDIDDIID";
print(get_num_seq(str_seq))
# this code is contributed by phasing17
C#
// C# code for the above approach
using System;
public class GFG {
public static string GetNumSeq(string strSeq)
{
int n = strSeq.Length;
int start = -1;
int end = -1;
string ans = "";
for (int i = 1; i <= n + 1; i++) {
ans += i.ToString();
}
for (int i = 0; i < n; i++) {
if (strSeq[i] == 'D') {
if (start == -1) {
start = i;
}
end = i;
}
else {
if (start != -1) {
ans = Reverse(ans, start, end + 2);
}
start = -1;
end = -1;
}
}
if (start != -1) {
ans = Reverse(ans, start, end + 2);
}
return ans;
}
public static string Reverse(string str, int start,
int end)
{
char[] arr = str.ToCharArray();
for (int i = start, j = end - 1; i < j; i++, j--) {
char temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
return new string(arr);
}
static public void Main()
{
// Code
string strSeq = "DDIDDIID";
Console.WriteLine(GetNumSeq(strSeq));
}
}
// This code is contributed by lokeshmvs21.
JavaScript
function get_num_seq(strSeq) {
let n = strSeq.length;
let start = -1;
let end = -1;
let ans = "";
for (let i = 1; i <= n + 1; i++) {
ans += String.fromCharCode(i+48);
}
for (let i = 0; i < n; i++) {
if (strSeq[i] === 'D') {
if (start === -1) {
start = i;
}
end = i;
} else {
if (start !== -1) {
ans = ans.slice(0, start) + ans.slice(start, end + 2).split("").reverse().join("") + ans.slice(end + 2);
}
start = -1;
end = -1;
}
}
if (start !== -1) {
ans = ans.slice(0, start) + ans.slice(start, end + 2).split("").reverse().join("") + ans.slice(end + 2);
}
return ans;
}
//driver's code
let str_seq="DDIDDIID";
document.write(get_num_seq(str_seq));
Time Complexity: O(n)
Auxiliary Space: O(1)
Number following a pattern | DSA Problem
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem