Find the maximum subarray XOR in a given array
Last Updated :
23 Jul, 2025
Given an array of integers. The task is to find the maximum subarray XOR value in the given array.
Examples:
Input: arr[] = {1, 2, 3, 4}
Output: 7
Explanation: The subarray {3, 4} has maximum XOR value
Input: arr[] = {8, 1, 2, 12, 7, 6}
Output: 15
Explanation: The subarray {1, 2, 12} has maximum XOR value
Input: arr[] = {4, 6}
Output: 6
Explanation: The subarray {6} has maximum XOR value
Naive Approach: Below is the idea to solve the problem:
Create all possible subarrays and calculate the XOR of the subarrays. The maximum among them will be the required answer.
Follow the steps mentioned below to implement the idea:
- Iterate from i = 0 to N-1:
- Initialize a variable (say curr_xor = 0) to store the XOR value of subarrays starting from i
- Run a nested loop from j = i to N-1:
- The value j determines the ending point for the current subarray starting from i.
- Update curr_xor by performing XOR of curr_xor with arr[j].
- If the value is greater than the maximum then update the maximum value also.
- The maximum value is the required answer.
Below is the Implementation of the above approach:
C++
// A simple C++ program to find max subarray XOR
#include<bits/stdc++.h>
using namespace std;
int maxSubarrayXOR(int arr[], int n)
{
int ans = INT_MIN; // Initialize result
// Pick starting points of subarrays
for (int i=0; i<n; i++)
{
int curr_xor = 0; // to store xor of current subarray
// Pick ending points of subarrays starting with i
for (int j=i; j<n; j++)
{
curr_xor = curr_xor ^ arr[j];
ans = max(ans, curr_xor);
}
}
return ans;
}
// Driver program to test above functions
int main()
{
int arr[] = {8, 1, 2, 12};
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Max subarray XOR is " << maxSubarrayXOR(arr, n);
return 0;
}
Java
// A simple Java program to find max subarray XOR
class GFG {
static int maxSubarrayXOR(int arr[], int n)
{
int ans = Integer.MIN_VALUE; // Initialize result
// Pick starting points of subarrays
for (int i=0; i<n; i++)
{
// to store xor of current subarray
int curr_xor = 0;
// Pick ending points of subarrays starting with i
for (int j=i; j<n; j++)
{
curr_xor = curr_xor ^ arr[j];
ans = Math.max(ans, curr_xor);
}
}
return ans;
}
// Driver program to test above functions
public static void main(String args[])
{
int arr[] = {8, 1, 2, 12};
int n = arr.length;
System.out.println("Max subarray XOR is " +
maxSubarrayXOR(arr, n));
}
}
//This code is contributed by Sumit Ghosh
Python3
# A simple Python program
# to find max subarray XOR
def maxSubarrayXOR(arr,n):
ans = -2147483648 #Initialize result
# Pick starting points of subarrays
for i in range(n):
# to store xor of current subarray
curr_xor = 0
# Pick ending points of
# subarrays starting with i
for j in range(i,n):
curr_xor = curr_xor ^ arr[j]
ans = max(ans, curr_xor)
return ans
# Driver code
arr = [8, 1, 2, 12]
n = len(arr)
print("Max subarray XOR is ",
maxSubarrayXOR(arr, n))
# This code is contributed
# by Anant Agarwal.
C#
// A simple C# program to find
// max subarray XOR
using System;
class GFG
{
// Function to find max subarray
static int maxSubarrayXOR(int []arr, int n)
{
int ans = int.MinValue;
// Initialize result
// Pick starting points of subarrays
for (int i = 0; i < n; i++)
{
// to store xor of current subarray
int curr_xor = 0;
// Pick ending points of
// subarrays starting with i
for (int j = i; j < n; j++)
{
curr_xor = curr_xor ^ arr[j];
ans = Math.Max(ans, curr_xor);
}
}
return ans;
}
// Driver code
public static void Main()
{
int []arr = {8, 1, 2, 12};
int n = arr.Length;
Console.WriteLine("Max subarray XOR is " +
maxSubarrayXOR(arr, n));
}
}
// This code is contributed by Sam007.
PHP
<?php
// A simple PHP program to
// find max subarray XOR
function maxSubarrayXOR($arr, $n)
{
// Initialize result
$ans = PHP_INT_MIN;
// Pick starting points
// of subarrays
for ($i = 0; $i < $n; $i++)
{
// to store xor of
// current subarray
$curr_xor = 0;
// Pick ending points of
// subarrays starting with i
for ($j = $i; $j < $n; $j++)
{
$curr_xor = $curr_xor ^ $arr[$j];
$ans = max($ans, $curr_xor);
}
}
return $ans;
}
// Driver Code
$arr = array(8, 1, 2, 12);
$n = count($arr);
echo "Max subarray XOR is "
, maxSubarrayXOR($arr, $n);
// This code is contributed by anuj_67.
?>
JavaScript
<script>
// A simple Javascript program to find
// max subarray XOR
function maxSubarrayXOR(arr, n)
{
// Initialize result
let ans = Number.MIN_VALUE;
// Pick starting points of subarrays
for(let i = 0; i < n; i++)
{
// To store xor of current subarray
let curr_xor = 0;
// Pick ending points of subarrays
// starting with i
for(let j = i; j < n; j++)
{
curr_xor = curr_xor ^ arr[j];
ans = Math.max(ans, curr_xor);
}
}
return ans;
}
// Driver code
let arr = [ 8, 1, 2, 12 ];
let n = arr.length;
document.write("Max subarray XOR is " +
maxSubarrayXOR(arr, n));
// This code is contributed by divyesh072019
</script>
OutputMax subarray XOR is 15
Time Complexity: O(N2).
Auxiliary Space: O(1)
Find the maximum subarray XOR in a given array using trie Data Structure.
Maximize the xor subarray by using trie data structure to find the binary inverse of current prefix xor inorder to set the left most unset bits and maximize the value.
Follow the below steps to Implement the idea:
- Create an empty Trie. Every node of Trie is going to contain two children, for 0 and 1 values of a bit.
- Initialize pre_xor = 0 and insert into the Trie, Initialize result = INT_MIN
- Traverse the given array and do the following for every array element arr[i].
- pre_xor = pre_xor ^ arr[i], pre_xor now contains xor of elements from arr[0] to arr[i].
- Query the maximum xor value ending with arr[i] from Trie.
- Update the result if the value obtained above is more than the current value of the result.
Illustration:
It can be observed from the above algorithm that we build a Trie that contains XOR of all prefixes of given array. To find the maximum XOR subarray ending with arr[i], there may be two cases.
- The prefix itself has the maximum XOR value ending with arr[i]. For example if i=2 in {8, 2, 1, 12}, then the maximum subarray xor ending with arr[2] is the whole prefix.
- Remove some prefix (ending at index from 0 to i-1). For example if i=3 in {8, 2, 1, 12}, then the maximum subarray xor ending with arr[3] starts with arr[1] and we need to remove arr[0].
- To find the prefix to be removed, find the entry in Trie that has maximum XOR value with current prefix. If we do XOR of such previous prefix with current prefix, get the maximum XOR value ending with arr[i].
- If there is no prefix to be removed (case i), then we return 0 (that's why we inserted 0 in Trie).
Below is the implementation of the above idea :
C++
// C++ program for a Trie based O(n) solution to find max
// subarray XOR
#include<bits/stdc++.h>
using namespace std;
// Assumed int size
#define INT_SIZE 32
// A Trie Node
struct TrieNode
{
int value; // Only used in leaf nodes
TrieNode *arr[2];
};
// Utility function to create a Trie node
TrieNode *newNode()
{
TrieNode *temp = new TrieNode;
temp->value = 0;
temp->arr[0] = temp->arr[1] = NULL;
return temp;
}
// Inserts pre_xor to trie with given root
void insert(TrieNode *root, int pre_xor)
{
TrieNode *temp = root;
// Start from the msb, insert all bits of
// pre_xor into Trie
for (int i=INT_SIZE-1; i>=0; i--)
{
// Find current bit in given prefix
bool val = pre_xor & (1<<i);
// Create a new node if needed
if (temp->arr[val] == NULL)
temp->arr[val] = newNode();
temp = temp->arr[val];
}
// Store value at leaf node
temp->value = pre_xor;
}
// Finds the maximum XOR ending with last number in
// prefix XOR 'pre_xor' and returns the XOR of this maximum
// with pre_xor which is maximum XOR ending with last element
// of pre_xor.
int query(TrieNode *root, int pre_xor)
{
TrieNode *temp = root;
for (int i=INT_SIZE-1; i>=0; i--)
{
// Find current bit in given prefix
bool val = pre_xor & (1<<i);
// Traverse Trie, first look for a
// prefix that has opposite bit
if (temp->arr[1-val]!=NULL)
temp = temp->arr[1-val];
// If there is no prefix with opposite
// bit, then look for same bit.
else if (temp->arr[val] != NULL)
temp = temp->arr[val];
}
return pre_xor^(temp->value);
}
// Returns maximum XOR value of a subarray in arr[0..n-1]
int maxSubarrayXOR(int arr[], int n)
{
// Create a Trie and insert 0 into it
TrieNode *root = newNode();
insert(root, 0);
// Initialize answer and xor of current prefix
int result = INT_MIN, pre_xor =0;
// Traverse all input array element
for (int i=0; i<n; i++)
{
// update current prefix xor and insert it into Trie
pre_xor = pre_xor^arr[i];
insert(root, pre_xor);
// Query for current prefix xor in Trie and update
// result if required
result = max(result, query(root, pre_xor));
}
return result;
}
// Driver program to test above functions
int main()
{
int arr[] = {8, 1, 2, 12};
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Max subarray XOR is " << maxSubarrayXOR(arr, n);
return 0;
}
Java
// Java program for a Trie based O(n) solution to
// find max subarray XOR
class GFG
{
// Assumed int size
static final int INT_SIZE = 32;
// A Trie Node
static class TrieNode
{
int value; // Only used in leaf nodes
TrieNode[] arr = new TrieNode[2];
public TrieNode() {
value = 0;
arr[0] = null;
arr[1] = null;
}
}
static TrieNode root;
// Inserts pre_xor to trie with given root
static void insert(int pre_xor)
{
TrieNode temp = root;
// Start from the msb, insert all bits of
// pre_xor into Trie
for (int i=INT_SIZE-1; i>=0; i--)
{
// Find current bit in given prefix
int val = (pre_xor & (1<<i)) >=1 ? 1 : 0;
// Create a new node if needed
if (temp.arr[val] == null)
temp.arr[val] = new TrieNode();
temp = temp.arr[val];
}
// Store value at leaf node
temp.value = pre_xor;
}
// Finds the maximum XOR ending with last number in
// prefix XOR 'pre_xor' and returns the XOR of this
// maximum with pre_xor which is maximum XOR ending
// with last element of pre_xor.
static int query(int pre_xor)
{
TrieNode temp = root;
for (int i=INT_SIZE-1; i>=0; i--)
{
// Find current bit in given prefix
int val = (pre_xor & (1<<i)) >= 1 ? 1 : 0;
// Traverse Trie, first look for a
// prefix that has opposite bit
if (temp.arr[1-val] != null)
temp = temp.arr[1-val];
// If there is no prefix with opposite
// bit, then look for same bit.
else if (temp.arr[val] != null)
temp = temp.arr[val];
}
return pre_xor^(temp.value);
}
// Returns maximum XOR value of a subarray in
// arr[0..n-1]
static int maxSubarrayXOR(int arr[], int n)
{
// Create a Trie and insert 0 into it
root = new TrieNode();
insert(0);
// Initialize answer and xor of current prefix
int result = Integer.MIN_VALUE;
int pre_xor =0;
// Traverse all input array element
for (int i=0; i<n; i++)
{
// update current prefix xor and insert it
// into Trie
pre_xor = pre_xor^arr[i];
insert(pre_xor);
// Query for current prefix xor in Trie and
// update result if required
result = Math.max(result, query(pre_xor));
}
return result;
}
// Driver program to test above functions
public static void main(String args[])
{
int arr[] = {8, 1, 2, 12};
int n = arr.length;
System.out.println("Max subarray XOR is " +
maxSubarrayXOR(arr, n));
}
}
// This code is contributed by Sumit Ghosh
Python3
"""Python implementation for a Trie based solution
to find max subArray XOR"""
# Structure of Trie Node
class Node:
def __init__(self, data):
self.data = data
# left node for 0
self.left = None
# right node for 1
self.right = None
# Class for implementing Trie
class Trie:
def __init__(self):
self.root = Node(0)
# Insert pre_xor to trie with given root
def insert(self, pre_xor):
self.temp = self.root
# Start from msb, insert all bits of pre_xor
# into the Trie
for i in range(31, -1, -1):
# Find current bit in prefix sum
val = pre_xor & (1<<i)
if val :
# Create new node if needed
if not self.temp.right:
self.temp.right = Node(0)
self.temp = self.temp.right
if not val:
# Create new node if needed
if not self.temp.left:
self.temp.left = Node(0)
self.temp = self.temp.left
# Store value at leaf node
self.temp.data = pre_xor
# Find the maximum xor ending with last number
# in prefix XOR and return the XOR of this
def query(self, xor):
self.temp = self.root
for i in range(31, -1, -1):
# Find the current bit in prefix xor
val = xor & (1<<i)
# Traverse the trie, first look for opposite bit
# and then look for same bit
if val:
if self.temp.left:
self.temp = self.temp.left
elif self.temp.right:
self.temp = self.temp.right
else:
if self.temp.right:
self.temp = self.temp.right
elif self.temp.left:
self.temp = self.temp.left
return xor ^ self.temp.data
# Returns maximum XOR value of subarray
def maxSubArrayXOR(self, n, Arr):
# Insert 0 in the trie
self.insert(0)
# Initialize result and pre_xor
result = -float('inf')
pre_xor = 0
# Traverse all input array element
for i in range(n):
# Update current prefix xor and
# insert it into Trie
pre_xor = pre_xor ^ Arr[i]
self.insert(pre_xor)
# Query for current prefix xor
# in Trie and update result
result = max(result, self.query(pre_xor))
return result
# Driver code
if __name__ == "__main__":
Arr = [8, 1, 2, 12]
n = len(Arr)
trie = Trie()
print("Max subarray XOR is", end = ' ')
print(trie.maxSubArrayXOR(n, Arr))
# This code is contributed by chaudhary_19
C#
using System;
// C# program for a Trie based O(n) solution to
// find max subarray XOR
public class GFG
{
// Assumed int size
public const int INT_SIZE = 32;
// A Trie Node
public class TrieNode
{
public int value; // Only used in leaf nodes
public TrieNode[] arr = new TrieNode[2];
public TrieNode()
{
value = 0;
arr[0] = null;
arr[1] = null;
}
}
public static TrieNode root;
// Inserts pre_xor to trie with given root
public static void insert(int pre_xor)
{
TrieNode temp = root;
// Start from the msb, insert all bits of
// pre_xor into Trie
for (int i = INT_SIZE-1; i >= 0; i--)
{
// Find current bit in given prefix
int val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
// Create a new node if needed
if (temp.arr[val] == null)
{
temp.arr[val] = new TrieNode();
}
temp = temp.arr[val];
}
// Store value at leaf node
temp.value = pre_xor;
}
// Finds the maximum XOR ending with last number in
// prefix XOR 'pre_xor' and returns the XOR of this
// maximum with pre_xor which is maximum XOR ending
// with last element of pre_xor.
public static int query(int pre_xor)
{
TrieNode temp = root;
for (int i = INT_SIZE-1; i >= 0; i--)
{
// Find current bit in given prefix
int val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
// Traverse Trie, first look for a
// prefix that has opposite bit
if (temp.arr[1 - val] != null)
{
temp = temp.arr[1 - val];
}
// If there is no prefix with opposite
// bit, then look for same bit.
else if (temp.arr[val] != null)
{
temp = temp.arr[val];
}
}
return pre_xor ^ (temp.value);
}
// Returns maximum XOR value of a subarray in
// arr[0..n-1]
public static int maxSubarrayXOR(int[] arr, int n)
{
// Create a Trie and insert 0 into it
root = new TrieNode();
insert(0);
// Initialize answer and xor of current prefix
int result = int.MinValue;
int pre_xor = 0;
// Traverse all input array element
for (int i = 0; i < n; i++)
{
// update current prefix xor and insert it
// into Trie
pre_xor = pre_xor ^ arr[i];
insert(pre_xor);
// Query for current prefix xor in Trie and
// update result if required
result = Math.Max(result, query(pre_xor));
}
return result;
}
// Driver program to test above functions
public static void Main(string[] args)
{
int[] arr = new int[] {8, 1, 2, 12};
int n = arr.Length;
Console.WriteLine("Max subarray XOR is " + maxSubarrayXOR(arr, n));
}
}
// This code is contributed by Shrikant13
JavaScript
// JavaScript program for a Trie based O(n) solution to find max subarray XOR
// Assumed int size
const INT_SIZE = 32;
// A Trie Node
class TrieNode {
constructor() {
this.value = 0; // Only used in leaf nodes
this.arr = [null, null];
}
}
let root;
// Inserts pre_xor to trie with given root
function insert(pre_xor) {
let temp = root;
// Start from the msb, insert all bits of
// pre_xor into Trie
for (let i = INT_SIZE - 1; i >= 0; i--) {
// Find current bit in given prefix
let val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
// Create a new node if needed
if (temp.arr[val] === null) {
temp.arr[val] = new TrieNode();
}
temp = temp.arr[val];
}
// Store value at leaf node
temp.value = pre_xor;
}
// Finds the maximum XOR ending with last number in
// prefix XOR 'pre_xor' and returns the XOR of this
// maximum with pre_xor which is maximum XOR ending
// with last element of pre_xor.
function query(pre_xor) {
let temp = root;
for (let i = INT_SIZE - 1; i >= 0; i--) {
// Find current bit in given prefix
let val = (pre_xor & (1 << i)) >= 1 ? 1 : 0;
// Traverse Trie, first look for a
// prefix that has opposite bit
if (temp.arr[1 - val] !== null) {
temp = temp.arr[1 - val];
}
// If there is no prefix with opposite
// bit, then look for same bit.
else if (temp.arr[val] !== null) {
temp = temp.arr[val];
}
}
return pre_xor ^ temp.value;
}
// Returns maximum XOR value of a subarray in arr[0..n-1]
function maxSubarrayXOR(arr, n) {
// Create a Trie and insert 0 into it
root = new TrieNode();
insert(0);
// Initialize answer and xor of current prefix
let result = Number.MIN_SAFE_INTEGER;
let pre_xor = 0;
// Traverse all input array element
for (let i = 0; i < n; i++) {
// update current prefix xor and insert it
// into Trie
pre_xor ^= arr[i];
insert(pre_xor);
// Query for current prefix xor in Trie and
// update result if required
result = Math.max(result, query(pre_xor));
}
return result;
}
// Driver program to test above functions
let arr = [8, 1, 2, 12];
let n = arr.length;
console.log("Max subarray XOR is " + maxSubarrayXOR(arr, n));
OutputMax subarray XOR is 15
Time Complexity: O(N).
Auxiliary Space: O(N)
Exercise: Extend the above solution so that it also prints starting and ending indexes of subarray with maximum value (Hint: we can add one more field to Trie node to achieve this
Contiguous Elements XOR | DSA Problem
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem