Find all pairs (a, b) in an array such that a % b = k
Last Updated :
24 Oct, 2024
Given an array with distinct elements, the task is to find the pairs in the array such that a % b = k, where k is a given integer. You may assume that a and b are in small range
Examples :
Input : arr[] = {2, 3, 5, 4, 7}
k = 3
Output : (7, 4), (3, 4), (3, 5), (3, 7)
7 % 4 = 3
3 % 4 = 3
3 % 5 = 3
3 % 7 = 3
Input: arr[] = [1, 2], k = 3
Output: 0
Explanation: No pairs give remainder 3.
Naive Approach - O(n^2) Time and O(1) Space
We consider all pairs one by one and check their modulo is equal to k or not. If equals to k, then print that pair.
C++
// C++ implementation to find such pairs
#include <bits/stdc++.h>
using namespace std;
// Function to find pair such that (a % b = k)
bool printPairs(int arr[], int n, int k)
{
bool isPairFound = true;
// Consider each and every pair
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
// Print if their modulo equals to k
if (i != j && arr[i] % arr[j] == k) {
cout << "(" << arr[i] << ", "
<< arr[j] << ")"
<< " ";
isPairFound = true;
}
}
}
return isPairFound;
}
// Driver program
int main()
{
int arr[] = { 2, 3, 5, 4, 7 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
if (printPairs(arr, n, k) == false)
cout << "No such pair exists";
return 0;
}
Java
// Java implementation to find such pairs
class Test {
// method to find pair such that (a % b = k)
static boolean printPairs(int arr[], int n, int k)
{
boolean isPairFound = true;
// Consider each and every pair
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
// Print if their modulo equals to k
if (i != j && arr[i] % arr[j] == k) {
System.out.print("(" + arr[i] + ", " + arr[j] + ")"
+ " ");
isPairFound = true;
}
}
}
return isPairFound;
}
// Driver method
public static void main(String args[])
{
int arr[] = { 2, 3, 5, 4, 7 };
int k = 3;
if (printPairs(arr, arr.length, k) == false)
System.out.println("No such pair exists");
}
}
Python
# Python3 implementation to find such pairs
# Function to find pair such that (a % b = k)
def printPairs(arr, n, k):
isPairFound = True
# Consider each and every pair
for i in range(0, n):
for j in range(0, n):
# Print if their modulo equals to k
if (i != j and arr[i] % arr[j] == k):
print("(", arr[i], ", ", arr[j], ")",
sep = "", end = " ")
isPairFound = True
return isPairFound
# Driver Code
arr = [2, 3, 5, 4, 7]
n = len(arr)
k = 3
if (printPairs(arr, n, k) == False):
print("No such pair exists")
#
C#
// C# implementation to find such pair
using System;
public class GFG {
// method to find pair such that (a % b = k)
static bool printPairs(int[] arr, int n, int k)
{
bool isPairFound = true;
// Consider each and every pair
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
{
// Print if their modulo equals to k
if (i != j && arr[i] % arr[j] == k)
{
Console.Write("(" + arr[i] + ", "
+ arr[j] + ")" + " ");
isPairFound = true;
}
}
}
return isPairFound;
}
// Driver method
public static void Main()
{
int[] arr = { 2, 3, 5, 4, 7 };
int k = 3;
if (printPairs(arr, arr.Length, k) == false)
Console.WriteLine("No such pair exists");
}
}
// This code is contributed by Sam007
JavaScript
<script>
// Javascript implementation to find such pair
// method to find pair such that (a % b = k)
function printPairs(arr, n, k)
{
let isPairFound = true;
// Consider each and every pair
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++)
{
// Print if their modulo equals to k
if (i != j && arr[i] % arr[j] == k)
{
document.write("(" + arr[i] + ", " + arr[j] + ")" + " ");
isPairFound = true;
}
}
}
return isPairFound;
}
let arr = [ 2, 3, 5, 4, 7 ];
let k = 3;
if (printPairs(arr, arr.length, k) == false)
document.write("No such pair exists");
</script>
PHP
<?php
// PHP implementation to
// find such pairs
// Function to find pair
// such that (a % b = k)
function printPairs($arr, $n, $k)
{
$isPairFound = true;
// Consider each and every pair
for ($i = 0; $i < $n; $i++)
{
for ( $j = 0; $j < $n; $j++)
{
// Print if their modulo
// equals to k
if ($i != $j && $arr[$i] %
$arr[$j] == $k)
{
echo "(" , $arr[$i] , ", ",
$arr[$j] , ")", " ";
$isPairFound = true;
}
}
}
return $isPairFound;
}
// Driver Code
$arr = array(2, 3, 5, 4, 7);
$n = sizeof($arr);
$k = 3;
if (printPairs($arr, $n, $k) == false)
echo "No such pair exists";
// This code is contributed by ajit
?>
Output(3, 5) (3, 4) (3, 7) (7, 4)
Efficient Solution for Small Values and Large Arrays - O(n* sqrt(max))) Time and O(n) Space
The idea is based on below observations :
- If k itself is present in arr[], then k forms a pair with all elements arr[i] where k < arr[i]. For all such arr[i], we have k % arr[i] = k.
- For all elements greater than or equal to k, we use the following fact.
If arr[i] % arr[j] = k,
==> arr[i] = x * arr[j] + k
==> (arr[i] - k) = x * arr[j]
We find all divisors of (arr[i] - k)
and see if they are present in arr[].
To quickly check if an element is present in the array, we use hashing.
C++
// C++ program to find all pairs such that
// a % b = k.
#include <bits/stdc++.h>
using namespace std;
// Utility function to find the divisors of
// n and store in vector v[]
vector<int> findDivisors(int n)
{
vector<int> v;
// Vector is used to store the divisors
for (int i = 1; i <= sqrt(n); i++) {
if (n % i == 0) {
// If n is a square number, push
// only one occurrence
if (n / i == i)
v.push_back(i);
else {
v.push_back(i);
v.push_back(n / i);
}
}
}
return v;
}
// Function to find pairs such that (a%b = k)
bool printPairs(int arr[], int n, int k)
{
// Store all the elements in the map
// to use map as hash for finding elements
// in O(1) time.
unordered_map<int, bool> occ;
for (int i = 0; i < n; i++)
occ[arr[i]] = true;
bool isPairFound = false;
for (int i = 0; i < n; i++) {
// Print all the pairs with (a, b) as
// (k, numbers greater than k) as
// k % (num (> k)) = k i.e. 2%4 = 2
if (occ[k] && k < arr[i]) {
cout << "(" << k << ", " << arr[i] << ") ";
isPairFound = true;
}
// Now check for the current element as 'a'
// how many b exists such that a%b = k
if (arr[i] >= k) {
// find all the divisors of (arr[i]-k)
vector<int> v = findDivisors(arr[i] - k);
// Check for each divisor i.e. arr[i] % b = k
// or not, if yes then print that pair.
for (int j = 0; j < v.size(); j++) {
if (arr[i] % v[j] == k && arr[i] != v[j] && occ[v[j]]) {
cout << "(" << arr[i] << ", "
<< v[j] << ") ";
isPairFound = true;
}
}
// Clear vector
v.clear();
}
}
return isPairFound;
}
// Driver program
int main()
{
int arr[] = { 3, 1, 2, 5, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 2;
if (printPairs(arr, n, k) == false)
cout << "No such pair exists";
return 0;
}
Java
// Java program to find all pairs such that
// a % b = k.
import java.util.HashMap;
import java.util.Vector;
class Test {
// Utility method to find the divisors of
// n and store in vector v[]
static Vector<Integer> findDivisors(int n)
{
Vector<Integer> v = new Vector<>();
// Vector is used to store the divisors
for (int i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
// If n is a square number, push
// only one occurrence
if (n / i == i)
v.add(i);
else {
v.add(i);
v.add(n / i);
}
}
}
return v;
}
// method to find pairs such that (a%b = k)
static boolean printPairs(int arr[], int n, int k)
{
// Store all the elements in the map
// to use map as hash for finding elements
// in O(1) time.
HashMap<Integer, Boolean> occ = new HashMap<>();
for (int i = 0; i < n; i++)
occ.put(arr[i], true);
boolean isPairFound = false;
for (int i = 0; i < n; i++) {
// Print all the pairs with (a, b) as
// (k, numbers greater than k) as
// k % (num (> k)) = k i.e. 2%4 = 2
if (occ.get(k) && k < arr[i]) {
System.out.print("(" + k + ", " + arr[i] + ") ");
isPairFound = true;
}
// Now check for the current element as 'a'
// how many b exists such that a%b = k
if (arr[i] >= k) {
// find all the divisors of (arr[i]-k)
Vector<Integer> v = findDivisors(arr[i] - k);
// Check for each divisor i.e. arr[i] % b = k
// or not, if yes then print that pair.
for (int j = 0; j < v.size(); j++) {
if (arr[i] % v.get(j) == k && arr[i] != v.get(j) && occ.get(v.get(j))) {
System.out.print("(" + arr[i] + ", "
+ v.get(j) + ") ");
isPairFound = true;
}
}
// Clear vector
v.clear();
}
}
return isPairFound;
}
// Driver method
public static void main(String args[])
{
int arr[] = { 3, 1, 2, 5, 4 };
int k = 2;
if (printPairs(arr, arr.length, k) == false)
System.out.println("No such pair exists");
}
}
Python
# Python3 program to find all pairs
# such that a % b = k.
# Utility function to find the divisors
# of n and store in vector v[]
import math as mt
def findDivisors(n):
v = []
# Vector is used to store the divisors
for i in range(1, mt.floor(n**(.5)) + 1):
if (n % i == 0):
# If n is a square number, push
# only one occurrence
if (n / i == i):
v.append(i)
else:
v.append(i)
v.append(n // i)
return v
# Function to find pairs such that (a%b = k)
def printPairs(arr, n, k):
# Store all the elements in the map
# to use map as hash for finding elements
# in O(1) time.
occ = dict()
for i in range(n):
occ[arr[i]] = True
isPairFound = False
for i in range(n):
# Print all the pairs with (a, b) as
# (k, numbers greater than k) as
# k % (num (> k)) = k i.e. 2%4 = 2
if (occ[k] and k < arr[i]):
print("(", k, ",", arr[i], ")", end = " ")
isPairFound = True
# Now check for the current element as 'a'
# how many b exists such that a%b = k
if (arr[i] >= k):
# find all the divisors of (arr[i]-k)
v = findDivisors(arr[i] - k)
# Check for each divisor i.e. arr[i] % b = k
# or not, if yes then print that pair.
for j in range(len(v)):
if (arr[i] % v[j] == k and
arr[i] != v[j] and
occ[v[j]]):
print("(", arr[i], ",", v[j],
")", end = " ")
isPairFound = True
return isPairFound
# Driver Code
arr = [3, 1, 2, 5, 4]
n = len(arr)
k = 2
if (printPairs(arr, n, k) == False):
print("No such pair exists")
# This code is contributed by mohit kumar
C#
// C# program to find all pairs
// such that a % b = k.
using System;
using System.Collections.Generic;
class GFG
{
// Utility method to find the divisors
// of n and store in vector v[]
public static List<int> findDivisors(int n)
{
List<int> v = new List<int>();
// Vector is used to store
// the divisors
for (int i = 1;
i <= Math.Sqrt(n); i++)
{
if (n % i == 0)
{
// If n is a square number,
// push only one occurrence
if (n / i == i)
{
v.Add(i);
}
else
{
v.Add(i);
v.Add(n / i);
}
}
}
return v;
}
// method to find pairs such
// that (a%b = k)
public static bool printPairs(int[] arr,
int n, int k)
{
// Store all the elements in the
// map to use map as hash for
// finding elements in O(1) time.
Dictionary<int,
bool> occ = new Dictionary<int,
bool>();
for (int i = 0; i < n; i++)
{
occ[arr[i]] = true;
}
bool isPairFound = false;
for (int i = 0; i < n; i++)
{
// Print all the pairs with (a, b) as
// (k, numbers greater than k) as
// k % (num (> k)) = k i.e. 2%4 = 2
if (occ[k] && k < arr[i])
{
Console.Write("(" + k + ", " +
arr[i] + ") ");
isPairFound = true;
}
// Now check for the current element
// as 'a' how many b exists such that
// a%b = k
if (arr[i] >= k)
{
// find all the divisors of (arr[i]-k)
List<int> v = findDivisors(arr[i] - k);
// Check for each divisor i.e.
// arr[i] % b = k or not, if
// yes then print that pair.
for (int j = 0; j < v.Count; j++)
{
if (arr[i] % v[j] == k &&
arr[i] != v[j] && occ[v[j]])
{
Console.Write("(" + arr[i] +
", " + v[j] + ") ");
isPairFound = true;
}
}
// Clear vector
v.Clear();
}
}
return isPairFound;
}
// Driver Code
public static void Main(string[] args)
{
int[] arr = new int[] {3, 1, 2, 5, 4};
int k = 2;
if (printPairs(arr, arr.Length, k) == false)
{
Console.WriteLine("No such pair exists");
}
}
}
// This code is contributed by Shrikant13
JavaScript
<script>
// JavaScript program to find all pairs such that
// a % b = k.
// Utility method to find the divisors of
// n and store in vector v[]
function findDivisors(n)
{
let v = [];
// Vector is used to store the divisors
for (let i = 1; i <= Math.sqrt(n); i++)
{
if (n % i == 0) {
// If n is a square number, push
// only one occurrence
if (n / i == i)
v.push(i);
else {
v.push(i);
v.push(Math.floor(n / i));
}
}
}
return v;
}
// method to find pairs such that (a%b = k)
function printPairs(arr,n,k)
{
// Store all the elements in the map
// to use map as hash for finding elements
// in O(1) time.
let occ = new Map();
for (let i = 0; i < n; i++)
occ.set(arr[i], true);
let isPairFound = false;
for (let i = 0; i < n; i++) {
// Print all the pairs with (a, b) as
// (k, numbers greater than k) as
// k % (num (> k)) = k i.e. 2%4 = 2
if (occ.get(k) && k < arr[i]) {
document.write("(" + k + ", " +
arr[i] + ") ");
isPairFound = true;
}
// Now check for the current element as 'a'
// how many b exists such that a%b = k
if (arr[i] >= k) {
// find all the divisors of (arr[i]-k)
let v = findDivisors(arr[i] - k);
// Check for each divisor
// i.e. arr[i] % b = k
// or not, if yes then
// print that pair.
for (let j = 0; j < v.length; j++)
{
if (arr[i] % v[j] == k &&
arr[i] != v[j] &&
occ.get(v[j]))
{
document.write("(" + arr[i] + ", "
+ v[j] + ") ");
isPairFound = true;
}
}
// Clear vector
v=[];
}
}
return isPairFound;
}
// Driver method
let arr=[3, 1, 2, 5, 4 ];
let k = 2;
if (printPairs(arr, arr.length, k) == false)
document.write("No such pair exists");
// This code is contributed by unknown2108
</script>
Output(2, 3) (2, 5) (5, 3) (2, 4)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem