Find next right node of a given key
Last Updated :
23 Jul, 2025
Given a Binary tree and a key in the binary tree, find the node right to the given key. If there is no node on right side, then return NULL. Expected time complexity is O(n) where n is the number of nodes in the given binary tree.
Example:
Input: root = [10 2 6 8 4 N 5] and key = 2

Output: 6
Explanation: We can see in the above tree
that the next right node of 2 is 6.
Approach
The idea is to do level order traversal of given Binary Tree. When we find the given key, we just check if the next node in level order traversal is of same level, if yes, we return the next node, otherwise return NULL.
C++
/* Program to find next right of a given key */
#include <iostream>
#include <queue>
using namespace std;
// A Binary Tree Node
struct node
{
struct node *left, *right;
int key;
};
// Method to find next right of given key k, it returns NULL if k is
// not present in tree or k is the rightmost node of its level
node* nextRight(node *root, int k)
{
// Base Case
if (root == NULL)
return 0;
// Create an empty queue for level order traversal
queue<node *> qn; // A queue to store node addresses
queue<int> ql; // Another queue to store node levels
int level = 0; // Initialize level as 0
// Enqueue Root and its level
qn.push(root);
ql.push(level);
// A standard BFS loop
while (qn.size())
{
// dequeue an node from qn and its level from ql
node *node = qn.front();
level = ql.front();
qn.pop();
ql.pop();
// If the dequeued node has the given key k
if (node->key == k)
{
// If there are no more items in queue or given node is
// the rightmost node of its level, then return NULL
if (ql.size() == 0 || ql.front() != level)
return NULL;
// Otherwise return next node from queue of nodes
return qn.front();
}
// Standard BFS steps: enqueue children of this node
if (node->left != NULL)
{
qn.push(node->left);
ql.push(level+1);
}
if (node->right != NULL)
{
qn.push(node->right);
ql.push(level+1);
}
}
// We reach here if given key x doesn't exist in tree
return NULL;
}
// Utility function to create a new tree node
node* newNode(int key)
{
node *temp = new node;
temp->key = key;
temp->left = temp->right = NULL;
return temp;
}
// A utility function to test above functions
void test(node *root, int k)
{
node *nr = nextRight(root, k);
if (nr != NULL)
cout << "Next Right of " << k << " is " << nr->key << endl;
else
cout << "No next right node found for " << k << endl;
}
// Driver program to test above functions
int main()
{
// Let us create binary tree given in the above example
node *root = newNode(10);
root->left = newNode(2);
root->right = newNode(6);
root->right->right = newNode(5);
root->left->left = newNode(8);
root->left->right = newNode(4);
test(root, 10);
test(root, 2);
test(root, 6);
test(root, 5);
test(root, 8);
test(root, 4);
return 0;
}
Java
// Java program to find next right of a given key
import java.util.LinkedList;
import java.util.Queue;
// A binary tree node
class Node
{
int data;
Node left, right;
Node(int item)
{
data = item;
left = right = null;
}
}
class BinaryTree
{
Node root;
// Method to find next right of given key k, it returns NULL if k is
// not present in tree or k is the rightmost node of its level
Node nextRight(Node first, int k)
{
// Base Case
if (first == null)
return null;
// Create an empty queue for level order traversal
// A queue to store node addresses
Queue<Node> qn = new LinkedList<Node>();
// Another queue to store node levels
Queue<Integer> ql = new LinkedList<Integer>();
int level = 0; // Initialize level as 0
// Enqueue Root and its level
qn.add(first);
ql.add(level);
// A standard BFS loop
while (qn.size() != 0)
{
// dequeue an node from qn and its level from ql
Node node = qn.peek();
level = ql.peek();
qn.remove();
ql.remove();
// If the dequeued node has the given key k
if (node.data == k)
{
// If there are no more items in queue or given node is
// the rightmost node of its level, then return NULL
if (ql.size() == 0 || ql.peek() != level)
return null;
// Otherwise return next node from queue of nodes
return qn.peek();
}
// Standard BFS steps: enqueue children of this node
if (node.left != null)
{
qn.add(node.left);
ql.add(level + 1);
}
if (node.right != null)
{
qn.add(node.right);
ql.add(level + 1);
}
}
// We reach here if given key x doesn't exist in tree
return null;
}
// A utility function to test above functions
void test(Node node, int k)
{
Node nr = nextRight(root, k);
if (nr != null)
System.out.println("Next Right of " + k + " is " + nr.data);
else
System.out.println("No next right node found for " + k);
}
// Driver program to test above functions
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(10);
tree.root.left = new Node(2);
tree.root.right = new Node(6);
tree.root.right.right = new Node(5);
tree.root.left.left = new Node(8);
tree.root.left.right = new Node(4);
tree.test(tree.root, 10);
tree.test(tree.root, 2);
tree.test(tree.root, 6);
tree.test(tree.root, 5);
tree.test(tree.root, 8);
tree.test(tree.root, 4);
}
}
// This code has been contributed by Mayank Jaiswal
Python
# Python program to find next right node of given key
# A Binary Tree Node
class Node:
# Constructor to create a new node
def __init__(self, key):
self.key = key
self.left = None
self.right = None
# Method to find next right of a given key k, it returns
# None if k is not present in tree or k is the rightmost
# node of its level
def nextRight(root, k):
# Base Case
if root is None:
return 0
# Create an empty queue for level order traversal
qn = [] # A queue to store node addresses
q1 = [] # Another queue to store node levels
level = 0
# Enqueue root and its level
qn.append(root)
q1.append(level)
# Standard BFS loop
while(len(qn) > 0):
# Dequeue an node from qn and its level from q1
node = qn.pop(0)
level = q1.pop(0)
# If the dequeued node has the given key k
if node.key == k :
# If there are no more items in queue or given
# node is the rightmost node of its level,
# then return None
if (len(q1) == 0 or q1[0] != level):
return None
# Otherwise return next node from queue of nodes
return qn[0]
# Standard BFS steps: enqueue children of this node
if node.left is not None:
qn.append(node.left)
q1.append(level+1)
if node.right is not None:
qn.append(node.right)
q1.append(level+1)
# We reach here if given key x doesn't exist in tree
return None
def test(root, k):
nr = nextRight(root, k)
if nr is not None:
print ("Next Right of " + str(k) + " is " + str(nr.key))
else:
print ("No next right node found for " + str(k))
# Driver program to test above function
root = Node(10)
root.left = Node(2)
root.right = Node(6)
root.right.right = Node(5)
root.left.left = Node(8)
root.left.right = Node(4)
test(root, 10)
test(root, 2)
test(root, 6)
test(root, 5)
test(root, 8)
test(root, 4)
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)
C#
// C# program to find next right of a given key
using System;
using System.Collections.Generic;
// A binary tree node
public class Node
{
public int data;
public Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
}
public class BinaryTree
{
Node root;
// Method to find next right of given
// key k, it returns NULL if k is
// not present in tree or k is the
// rightmost node of its level
Node nextRight(Node first, int k)
{
// Base Case
if (first == null)
return null;
// Create an empty queue for
// level order traversal
// A queue to store node addresses
Queue<Node> qn = new Queue<Node>();
// Another queue to store node levels
Queue<int> ql = new Queue<int>();
int level = 0; // Initialize level as 0
// Enqueue Root and its level
qn.Enqueue(first);
ql.Enqueue(level);
// A standard BFS loop
while (qn.Count != 0)
{
// dequeue an node from
// qn and its level from ql
Node node = qn.Peek();
level = ql.Peek();
qn.Dequeue();
ql.Dequeue();
// If the dequeued node has the given key k
if (node.data == k)
{
// If there are no more items
// in queue or given node is
// the rightmost node of its
// level, then return NULL
if (ql.Count == 0 || ql.Peek() != level)
return null;
// Otherwise return next
// node from queue of nodes
return qn.Peek();
}
// Standard BFS steps: enqueue
// children of this node
if (node.left != null)
{
qn.Enqueue(node.left);
ql.Enqueue(level + 1);
}
if (node.right != null)
{
qn.Enqueue(node.right);
ql.Enqueue(level + 1);
}
}
// We reach here if given
// key x doesn't exist in tree
return null;
}
// A utility function to test above functions
void test(Node node, int k)
{
Node nr = nextRight(root, k);
if (nr != null)
Console.WriteLine("Next Right of " +
k + " is " + nr.data);
else
Console.WriteLine("No next right node found for " + k);
}
// Driver code
public static void Main(String []args)
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(10);
tree.root.left = new Node(2);
tree.root.right = new Node(6);
tree.root.right.right = new Node(5);
tree.root.left.left = new Node(8);
tree.root.left.right = new Node(4);
tree.test(tree.root, 10);
tree.test(tree.root, 2);
tree.test(tree.root, 6);
tree.test(tree.root, 5);
tree.test(tree.root, 8);
tree.test(tree.root, 4);
}
}
// This code has been contributed
// by 29AjayKumar
JavaScript
<script>
// Javascript program to find next right of a given key
// A binary tree node
class Node
{
constructor(item)
{
this.data = item;
this.left = this.right = null;
}
}
let root;
// Method to find next right of given key k,
// it returns NULL if k is not present in
// tree or k is the rightmost node of its level
function nextRight(first, k)
{
// Base Case
if (first == null)
return null;
// Create an empty queue for level
// order traversal. A queue to
// store node addresses
let qn = [];
// Another queue to store node levels
let ql = [];
// Initialize level as 0
let level = 0;
// Enqueue Root and its level
qn.push(first);
ql.push(level);
// A standard BFS loop
while (qn.length != 0)
{
// dequeue an node from qn and its level from ql
let node = qn[0];
level = ql[0];
qn.shift();
ql.shift();
// If the dequeued node has the given key k
if (node.data == k)
{
// If there are no more items in queue
// or given node is the rightmost node
// of its level, then return NULL
if (ql.length == 0 || ql[0] != level)
return null;
// Otherwise return next node
// from queue of nodes
return qn[0];
}
// Standard BFS steps: enqueue
// children of this node
if (node.left != null)
{
qn.push(node.left);
ql.push(level + 1);
}
if (node.right != null)
{
qn.push(node.right);
ql.push(level + 1);
}
}
// We reach here if given key
// x doesn't exist in tree
return null;
}
// A utility function to test above functions
function test(node, k)
{
let nr = nextRight(root, k);
if (nr != null)
document.write("Next Right of " + k +
" is " + nr.data + "<br>");
else
document.write("No next right node found for " +
k + "<br>");
}
// Driver code
root = new Node(10);
root.left = new Node(2);
root.right = new Node(6);
root.right.right = new Node(5);
root.left.left = new Node(8);
root.left.right = new Node(4);
test(root, 10);
test(root, 2);
test(root, 6);
test(root, 5);
test(root, 8);
test(root, 4);
// This code is contributed by rag2127
</script>
OutputNo next right node found for 10
Next Right of 2 is 6
No next right node found for 6
No next right node found for 5
Next Right of 8 is 4
Next Right of 4 is 5
Time Complexity: The above code is a simple BFS traversal code which visits every enqueue and dequeues a node at most once. Therefore, the time complexity is O(n) where n is the number of nodes in the given binary tree.
Auxiliary Space: O(n)
Efficient Approach :
The idea is to use the level order traversal of a binary tree discussed in the 2nd approach of this post.
If we do the level order traversal in the above fashion then while processing the nodes of a level we can check if it is the last element of that level or not. If it is not the last element of it's level then there will definitely be an element next to it. See the below C++ code to understand the approach clearly.
Implementation:
C++
/* Program to find next right of a given key */
#include <iostream>
#include <queue>
using namespace std;
// A Binary Tree Node
struct node {
struct node *left, *right;
int key;
};
// Method to find next right of given key k, it returns NULL
// if k is not present in tree or k is the rightmost node of
// its level
node* nextRight(node* root, int key)
{
// Base case
if (root == NULL)
return NULL;
// variable to store the result
node* res = NULL;
// queue q to store the nodes of the tree
queue<node*> q;
// push the root in the queue
q.push(root);
// A modified BFS loop
while (!q.empty()) {
// Get the count of the elements in the queue, this
// is also the count of elements present at the
// current level
int n = q.size();
// loop through the elements of the current level
for (int i = 0; i < n; i++) {
// take out the front of the queue
node* temp = q.front();
q.pop();
// if the key is found we check if there is any
// element next to it and return the answer
// accordingally
if (temp->key == key) {
if (i != n - 1)
return q.front();
else
return NULL;
}
// while the current level elements are
// processed we push their children into the
// queue
if (temp->left)
q.push(temp->left);
if (temp->right)
q.push(temp->right);
}
}
// If we reach here, it means the element was not found
// and thus no next element will be there
return NULL;
}
// Utility function to create a new tree node
node* newNode(int key)
{
node* temp = new node;
temp->key = key;
temp->left = temp->right = NULL;
return temp;
}
// A utility function to test above functions
void test(node* root, int k)
{
node* nr = nextRight(root, k);
if (nr != NULL)
cout << "Next Right of " << k << " is " << nr->key
<< endl;
else
cout << "No next right node found for " << k
<< endl;
}
// Driver program to test above functions
int main()
{
// Let us create binary tree given in the above example
node* root = newNode(10);
root->left = newNode(2);
root->right = newNode(6);
root->right->right = newNode(5);
root->left->left = newNode(8);
root->left->right = newNode(4);
test(root, 10);
test(root, 2);
test(root, 6);
test(root, 5);
test(root, 8);
test(root, 4);
return 0;
}
// This code is contributed by Abhijeet Kumar(abhijeet19403)
Java
// Java program to find next right of a given key
import java.util.LinkedList;
import java.util.Queue;
// A binary tree node
class Node {
int data;
Node left, right;
Node(int item)
{
data = item;
left = right = null;
}
}
class BinaryTree {
Node root;
// Method to find next right of given key k, it returns
// NULL if k is not present in tree or k is the
// rightmost node of its level
Node nextRight(Node first, int k)
{
// Base Case
if (first == null)
return null;
// Create an empty queue for level order traversal
// A queue to store node addresses
Node res = null;
Queue<Node> q = new LinkedList<Node>();
// Enqueue Root and its level
q.add(first);
// A standard BFS loop
while (q.size() != 0) {
// Get the count of the elements in the queue,
// this
// is also the count of elements present at the
// current level
int n = q.size();
// loop through the elements of the current
// level
for (int i = 0; i < n; i++) {
Node temp = q.peek();
q.remove();
// if the key is found we check if there is
// any
// element next to it and return the answer
// accordingally
if (temp.data == k) {
if (i != n - 1) {
return q.peek();
}
else
return null;
}
// while the current level elements are
// processed we push their children into the
// queue
if (temp.left != null)
q.add(temp.left);
if (temp.right != null)
q.add(temp.right);
}
}
// We reach here if given key x doesn't exist in
// tree
return null;
}
// A utility function to test above functions
void test(Node node, int k)
{
Node nr = nextRight(root, k);
if (nr != null)
System.out.println("Next Right of " + k + " is "
+ nr.data);
else
System.out.println(
"No next right node found for " + k);
}
// Driver program to test above functions
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(10);
tree.root.left = new Node(2);
tree.root.right = new Node(6);
tree.root.right.right = new Node(5);
tree.root.left.left = new Node(8);
tree.root.left.right = new Node(4);
tree.test(tree.root, 10);
tree.test(tree.root, 2);
tree.test(tree.root, 6);
tree.test(tree.root, 5);
tree.test(tree.root, 8);
tree.test(tree.root, 4);
}
}
// This code is contributed by garg28harsh.
Python
# Python program to find next right of a given key
class Node:
def __init__(self, item):
self.data = item
self.left = None
self.right = None
root = None
# Method to find next right of given key k, it returns
# None if k is not present in tree or k is the
# rightmost node of its level
def nextRight(first, k):
# Base Case
if first is None:
return None
# Create an empty queue for level order traversal
# A queue to store node addresses
res = None
q = []
# Enqueue Root and its level
q.append(first)
# A standard BFS loop
while len(q) != 0:
# Get the count of the elements in the queue,
# this
# is also the count of elements present at the
# current level
n = len(q)
# loop through the elements of the current
# level
for i in range(n):
temp = q[0]
q.pop(0)
# if the key is found we check if there is
# any
# element next to it and return the answer
# accordingally
if temp.data == k:
if i != n - 1:
return q[0]
else:
return None
# while the current level elements are
# processed we push their children into the
# queue
if temp.left is not None:
q.append(temp.left)
if temp.right is not None:
q.append(temp.right)
# We reach here if given key
# x doesn't exist in tree
return None
# A utility function to test above functions
def test(node, k):
nr = nextRight(root, k)
if nr is not None:
print("Next Right of " + str(k) +
" is " + str(nr.data))
else:
print("No next right node found for " +
str(k))
root = Node(10)
root.left = Node(2)
root.right = Node(6)
root.right.right = Node(5)
root.left.left = Node(8)
root.left.right = Node(4)
test(root, 10)
test(root, 2)
test(root, 6)
test(root, 5)
test(root, 8)
test(root, 4)
# contributed by akashish__
C#
// C# program to find next right of a given key
using System;
using System.Collections;
// A binary tree node
public class Node {
public int data;
public Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
}
// This Code is contributed by karandeep1234
public class BinaryTree {
public Node root;
// Method to find next right of given key k, it returns
// NULL if k is not present in tree or k is the
// rightmost node of its level
public Node nextRight(Node first, int k)
{
// Base Case
if (first == null)
return null;
// Create an empty queue for level order traversal
// A queue to store node addresses
// Node res = null;
Queue q = new Queue();
// Enqueue Root and its level
q.Enqueue(first);
// A standard BFS loop
while (q.Count != 0) {
// Get the count of the elements in the queue,
// this
// is also the count of elements present at the
// current level
int n = q.Count;
// loop through the elements of the current
// level
for (int i = 0; i < n; i++) {
Node temp = (Node)q.Peek();
q.Dequeue();
// if the key is found we check if there is
// any
// element next to it and return the answer
// accordingally
if (temp.data == k) {
if (i != n - 1) {
return (Node)q.Peek();
}
else
return null;
}
// while the current level elements are
// processed we push their children into the
// queue
if (temp.left != null)
q.Enqueue(temp.left);
if (temp.right != null)
q.Enqueue(temp.right);
}
}
// We reach here if given key x doesn't exist in
// tree
return null;
}
// A utility function to test above functions
void test(Node node, int k)
{
Node nr = nextRight(root, k);
if (nr != null)
Console.WriteLine("Next Right of " + k + " is "
+ nr.data);
else
Console.WriteLine(
"No next right node found for " + k);
}
// Driver program to test above functions
public static void Main(string[] args)
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(10);
tree.root.left = new Node(2);
tree.root.right = new Node(6);
tree.root.right.right = new Node(5);
tree.root.left.left = new Node(8);
tree.root.left.right = new Node(4);
tree.test(tree.root, 10);
tree.test(tree.root, 2);
tree.test(tree.root, 6);
tree.test(tree.root, 5);
tree.test(tree.root, 8);
tree.test(tree.root, 4);
}
}
JavaScript
// JavaScript program to find next right of a given key
class Node{
constructor(item){
this.data = item;
this.left = this.right = null;
}
}
var root;
// Method to find next right of given key k, it returns
// NULL if k is not present in tree or k is the
// rightmost node of its level
function nextRight(first, k)
{
// Base Case
if (first == null)
return null;
// Create an empty queue for level order traversal
// A queue to store node addresses
var res = null;
var q = [];
// Enqueue Root and its level
q.push(first);
// A standard BFS loop
while (q.length != 0)
{
// Get the count of the elements in the queue,
// this
// is also the count of elements present at the
// current level
var n = q.length;
// loop through the elements of the current
// level
for(let i=0;i<n;i++){
let temp = q[0];
q.shift();
// if the key is found we check if there is
// any
// element next to it and return the answer
// accordingally
if (temp.data == k)
{
if (i != n -1 ){
return q[0];
}
else{
return null;
}
}
// while the current level elements are
// processed we push their children into the
// queue
if (temp.left != null)
{
q.push(temp.left);
}
if (temp.right != null)
{
q.push(temp.right);
}
}
}
// We reach here if given key
// x doesn't exist in tree
return null;
}
// A utility function to test above functions
function test(node, k)
{
let nr = nextRight(root, k);
if (nr != null)
console.log("Next Right of " + k +
" is " + nr.data + "<br>");
else
console.log("No next right node found for " +
k + "<br>");
}
root = new Node(10);
root.left = new Node(2);
root.right = new Node(6);
root.right.right = new Node(5);
root.left.left = new Node(8);
root.left.right = new Node(4);
test(root, 10);
test(root, 2);
test(root, 6);
test(root, 5);
test(root, 8);
test(root, 4);
// This code is contributed by lokeshmvs21.
OutputNo next right node found for 10
Next Right of 2 is 6
No next right node found for 6
No next right node found for 5
Next Right of 8 is 4
Next Right of 4 is 5
Time Complexity: O(N), Although we are using nested loops but if you observe we are just traversing every element of the tree just once.
Auxiliary Space: O(B), Here B is the breadth of the tree and the extra space is used by the elements stored in the queue.
The extra space used in this approach is less than the previous approach as we are using only a single queue.
Exercise: Write a function to find left node of a given node. If there is no node on the left side, then return NULL.
Find next right node of a given key
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem