Find an element in array such that sum of left array is equal to sum of right array
Last Updated :
14 Feb, 2023
Given, an array of size n. Find an element that divides the array into two sub-arrays with equal sums.
Examples:
Input: 1 4 2 5 0
Output: 2
Explanation: If 2 is the partition, subarrays are : [1, 4] and [5]
Input: 2 3 4 1 4 5
Output: 1
Explanation: If 1 is the partition, Subarrays are : [2, 3, 4] and [4, 5]
Input: 1 2 3
Output: -1
Explanation: No sub-arrays possible. return -1
Method 1 (Simple)
Consider every element starting from the second element. Compute the sum of elements on its left and the sum of elements on its right. If these two sums are the same, return the element.
Steps to solve the problem:
1. iterate through i=1 to n:
*declare a leftsum variable to zero.
*iterate through i-1 till zero and add array element to leftsum.
*declare a rightsum variable to zero.
*iterate through i+1 till n and add array element to rightsum.
*check if leftsum is equal to rightsum then return arr[i].
2. return -1 in case of no point.
C++
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
int findElement(int arr[], int n)
{
for (int i = 1; i < n; i++) {
int leftSum = 0;
for (int j = i - 1; j >= 0; j--) {
leftSum += arr[j];
}
int rightSum = 0;
for (int k = i + 1; k < n; k++) {
rightSum += arr[k];
}
if (leftSum == rightSum) {
return arr[i];
}
}
return -1;
}
int main()
{
// Case 1
int arr1[] = { 1, 4, 2, 5 };
int n1 = sizeof(arr1) / sizeof(arr1[0]);
cout << findElement(arr1, n1) << "\n";
// Case 2
int arr2[] = { 2, 3, 4, 1, 4, 5 };
int n2 = sizeof(arr2) / sizeof(arr2[0]);
cout << findElement(arr2, n2);
return 0;
}
// This code contributed by Bhanu Teja Kodali
Java
import java.io.*;
import java.util.*;
import java.util.stream.Collectors;
class GFG {
// Finds an element in an array such that
// left and right side sums are equal
static int findElement(int arr[], int n)
{
List<Integer> list
= Arrays.stream(arr).boxed().collect(
Collectors.toList());
for (int i = 1; i <= n; i++) {
int leftSum = list.subList(0, i)
.stream()
.mapToInt(x -> x)
.sum();
int rightSum = list.subList(i + 1, n)
.stream()
.mapToInt(x -> x)
.sum();
if (leftSum == rightSum)
return list.get(i);
}
return -1;
}
public static void main(String[] args)
{
// Case 1
int arr1[] = { 1, 4, 2, 5 };
int n1 = arr1.length;
System.out.println(findElement(arr1, n1));
// Case 2
int arr2[] = { 2, 3, 4, 1, 4, 5 };
int n2 = arr2.length;
System.out.println(findElement(arr2, n2));
}
}
// This code is contributed by Bhanu Teja Kodali
Python3
# Python 3 Program to find an element
# such that sum of right side element
# is equal to sum of left side
# Function to Find an element in
# an array such that left and right
# side sums are equal
def findElement(arr, n):
for i in range(1, n):
leftSum = sum(arr[0:i])
rightSum = sum(arr[i+1:])
if(leftSum == rightSum):
return arr[i]
return -1
# Driver Code
if __name__ == "__main__":
# Case 1
arr = [1, 4, 2, 5]
n = len(arr)
print(findElement(arr, n))
# Case 2
arr = [2, 3, 4, 1, 4, 5]
n = len(arr)
print(findElement(arr, n))
# This code is contributed by Bhanu Teja Kodali
C#
using System;
public class GFG {
// Finds an element in an
// array such that left
// and right side sums
// are equal
static int findElement(int[] arr, int n)
{
for (int i = 1; i < n; i++) {
int leftSum = 0;
for (int j = i - 1; j >= 0; j--) {
leftSum += arr[j];
}
int rightSum = 0;
for (int k = i + 1; k < n; k++) {
rightSum += arr[k];
}
if (leftSum == rightSum) {
return arr[i];
}
}
return -1;
}
static public void Main()
{
// Case 1
int[] arr1 = { 1, 4, 2, 5 };
int n1 = arr1.Length;
Console.WriteLine(findElement(arr1, n1));
// Case 2
int[] arr2 = { 2, 3, 4, 1, 4, 5 };
int n2 = arr2.Length;
Console.WriteLine(findElement(arr2, n2));
}
// This code is contributed by Bhanu Teja Kodali
}
JavaScript
<script>
// Javascript program to find an element
// such that sum of right side element
// is equal to sum of left side
// Finds an element in an array such that
// left and right side sums are equal
function findElement(arr , n)
{
for(i = 1; i < n; i++){
let leftSum = 0;
for(j = i-1; j >= 0; j--){
leftSum += arr[j];
}
let rightSum = 0;
for(k = i+1; k < n; k++){
rightSum += arr[k];
}
if(leftSum === rightSum){
return arr[i];
}
}
return -1;
}
// Driver code
//Case 1
var arr = [ 1, 4, 2, 5 ];
var n = arr.length;
document.write(findElement(arr, n));
document.write("<br><br>")
//Case 2
var arr = [ 2, 3, 4, 1, 4, 5 ];
var n = arr.length;
document.write(findElement(arr, n));
// This code contributed by Bhanu Teja Kodali
</script>
Time Complexity: O(n^2)
Auxiliary Space: O(1)
Method 2 (Using Prefix and Suffix Arrays) :
We form a prefix and suffix sum arrays
Given array: 1 4 2 5
Prefix Sum: 1 5 7 12
Suffix Sum: 12 11 7 5
Now, we will traverse both prefix arrays.
The index at which they yield equal result,
is the index where the array is partitioned
with equal sum.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int findElement(int arr[], int n)
{
// Forming prefix sum array from 0
int prefixSum[n];
prefixSum[0] = arr[0];
for (int i = 1; i < n; i++)
prefixSum[i] = prefixSum[i - 1] + arr[i];
// Forming suffix sum array from n-1
int suffixSum[n];
suffixSum[n - 1] = arr[n - 1];
for (int i = n - 2; i >= 0; i--)
suffixSum[i] = suffixSum[i + 1] + arr[i];
// Find the point where prefix and suffix
// sums are same.
for (int i = 1; i < n - 1; i++)
if (prefixSum[i] == suffixSum[i])
return arr[i];
return -1;
}
// Driver code
int main()
{
int arr[] = { 1, 4, 2, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << findElement(arr, n);
return 0;
}
Java
// Java program to find an element
// such that sum of right side element
// is equal to sum of left side
public class GFG {
// Finds an element in an array such that
// left and right side sums are equal
static int findElement(int arr[], int n)
{
// Forming prefix sum array from 0
int[] prefixSum = new int[n];
prefixSum[0] = arr[0];
for (int i = 1; i < n; i++)
prefixSum[i] = prefixSum[i - 1] + arr[i];
// Forming suffix sum array from n-1
int[] suffixSum = new int[n];
suffixSum[n - 1] = arr[n - 1];
for (int i = n - 2; i >= 0; i--)
suffixSum[i] = suffixSum[i + 1] + arr[i];
// Find the point where prefix and suffix
// sums are same.
for (int i = 1; i < n - 1; i++)
if (prefixSum[i] == suffixSum[i])
return arr[i];
return -1;
}
// Driver code
public static void main(String args[])
{
int arr[] = { 1, 4, 2, 5 };
int n = arr.length;
System.out.println(findElement(arr, n));
}
}
// This code is contributed by Sumit Ghosh
Python 3
# Python 3 Program to find an element
# such that sum of right side element
# is equal to sum of left side
# Function for Finds an element in
# an array such that left and right
# side sums are equal
def findElement(arr, n) :
# Forming prefix sum array from 0
prefixSum = [0] * n
prefixSum[0] = arr[0]
for i in range(1, n) :
prefixSum[i] = prefixSum[i - 1] + arr[i]
# Forming suffix sum array from n-1
suffixSum = [0] * n
suffixSum[n - 1] = arr[n - 1]
for i in range(n - 2, -1, -1) :
suffixSum[i] = suffixSum[i + 1] + arr[i]
# Find the point where prefix
# and suffix sums are same.
for i in range(1, n - 1, 1) :
if prefixSum[i] == suffixSum[i] :
return arr[i]
return -1
# Driver Code
if __name__ == "__main__" :
arr = [ 1, 4, 2, 5]
n = len(arr)
print(findElement(arr, n))
# This code is contributed by ANKITRAI1
C#
// C# program to find an element
// such that sum of right side element
// is equal to sum of left side
using System;
class GFG
{
// Finds an element in an
// array such that left
// and right side sums
// are equal
static int findElement(int []arr,
int n)
{
// Forming prefix sum
// array from 0
int[] prefixSum = new int[n];
prefixSum[0] = arr[0];
for (int i = 1; i < n; i++)
prefixSum[i] = prefixSum[i - 1] +
arr[i];
// Forming suffix sum
// array from n-1
int[] suffixSum = new int[n];
suffixSum[n - 1] = arr[n - 1];
for (int i = n - 2; i >= 0; i--)
suffixSum[i] = suffixSum[i + 1] +
arr[i];
// Find the point where prefix
// and suffix sums are same.
for (int i = 1; i < n - 1; i++)
if (prefixSum[i] == suffixSum[i])
return arr[i];
return -1;
}
// Driver code
public static void Main()
{
int []arr = { 1, 4, 2, 5 };
int n = arr.Length;
Console.WriteLine(findElement(arr, n));
}
}
// This code is contributed by anuj_67.
PHP
<?php
function findElement(&$arr, $n)
{
// Forming prefix sum array from 0
$prefixSum = array_fill(0, $n, NULL);
$prefixSum[0] = $arr[0];
for ($i = 1; $i < $n; $i++)
$prefixSum[$i] = $prefixSum[$i - 1] +
$arr[$i];
// Forming suffix sum array from n-1
$suffixSum = array_fill(0, $n, NULL);
$suffixSum[$n - 1] = $arr[$n - 1];
for ($i = $n - 2; $i >= 0; $i--)
$suffixSum[$i] = $suffixSum[$i + 1] +
$arr[$i];
// Find the point where prefix
// and suffix sums are same.
for ($i = 1; $i < $n - 1; $i++)
if ($prefixSum[$i] == $suffixSum[$i])
return $arr[$i];
return -1;
}
// Driver code
$arr = array( 1, 4, 2, 5 );
$n = sizeof($arr);
echo findElement($arr, $n);
// This code is contributed
// by ChitraNayal
?>
JavaScript
<script>
// Javascript program to find an element
// such that sum of right side element
// is equal to sum of left side
// Finds an element in an array such that
// left and right side sums are equal
function findElement(arr , n)
{
// Forming prefix sum array from 0
var prefixSum = Array(n).fill(0);
prefixSum[0] = arr[0];
for (i = 1; i < n; i++)
prefixSum[i] = prefixSum[i - 1] + arr[i];
// Forming suffix sum array from n-1
var suffixSum = Array(n).fill(0);
suffixSum[n - 1] = arr[n - 1];
for (i = n - 2; i >= 0; i--)
suffixSum[i] = suffixSum[i + 1] + arr[i];
// Find the point where prefix and suffix
// sums are same.
for (i = 1; i < n - 1; i++)
if (prefixSum[i] == suffixSum[i])
return arr[i];
return -1;
}
// Driver code
var arr = [ 1, 4, 2, 5 ];
var n = arr.length;
document.write(findElement(arr, n));
// This code contributed by umadevi9616
</script>
Time Complexity: O(n)
Auxiliary Space: O(n)
Method 3 (Space efficient)
We calculate the sum of the whole array except the first element in right_sum, considering it to be the partitioning element. Now, we traverse the array from left to right, subtracting an element from right_sum and adding an element to left_sum. At the point where right_sum equals left_sum, we get the partition.
Below is the implementation :
C++
#include <bits/stdc++.h>
using namespace std;
// Function to compute partition
int findElement(int arr[], int size)
{
int right_sum = 0, left_sum = 0;
// Computing right_sum
for (int i = 1; i < size; i++)
right_sum += arr[i];
// Checking the point of partition
// i.e. left_Sum == right_sum
for (int i = 0, j = 1; j < size; i++, j++) {
right_sum -= arr[j];
left_sum += arr[i];
if (left_sum == right_sum)
return arr[i + 1];
}
return -1;
}
// Driver
int main()
{
int arr[] = { 2, 3, 4, 1, 4, 5 };
int size = sizeof(arr) / sizeof(arr[0]);
cout << findElement(arr, size);
return 0;
}
Java
// Java program to find an element
// such that sum of right side element
// is equal to sum of left side
public class GFG {
// Function to compute partition
static int findElement(int arr[], int size)
{
int right_sum = 0, left_sum = 0;
// Computing right_sum
for (int i = 1; i < size; i++)
right_sum += arr[i];
// Checking the point of partition
// i.e. left_Sum == right_sum
for (int i = 0, j = 1; j < size; i++, j++) {
right_sum -= arr[j];
left_sum += arr[i];
if (left_sum == right_sum)
return arr[i + 1];
}
return -1;
}
// Driver
public static void main(String args[])
{
int arr[] = { 2, 3, 4, 1, 4, 5 };
int size = arr.length;
System.out.println(findElement(arr, size));
}
}
// This code is contributed by Sumit Ghosh
Python 3
# Python 3 Program to find an element
# such that sum of right side element
# is equal to sum of left side
# Function to compute partition
def findElement(arr, size) :
right_sum, left_sum = 0, 0
# Computing right_sum
for i in range(1, size) :
right_sum += arr[i]
i, j = 0, 1
# Checking the point of partition
# i.e. left_Sum == right_sum
while j < size :
right_sum -= arr[j]
left_sum += arr[i]
if left_sum == right_sum :
return arr[i + 1]
j += 1
i += 1
return -1
# Driver Code
if __name__ == "__main__" :
arr = [ 2, 3, 4, 1, 4, 5]
n = len(arr)
print(findElement(arr, n))
# This code is contributed by ANKITRAI1
C#
// C# program to find an
// element such that sum
// of right side element
// is equal to sum of
// left side
using System;
class GFG
{
// Function to compute
// partition
static int findElement(int []arr,
int size)
{
int right_sum = 0,
left_sum = 0;
// Computing right_sum
for (int i = 1; i < size; i++)
right_sum += arr[i];
// Checking the point
// of partition i.e.
// left_Sum == right_sum
for (int i = 0, j = 1;
j < size; i++, j++)
{
right_sum -= arr[j];
left_sum += arr[i];
if (left_sum == right_sum)
return arr[i + 1];
}
return -1;
}
// Driver Code
public static void Main()
{
int []arr = {2, 3, 4, 1, 4, 5};
int size = arr.Length;
Console.WriteLine(findElement(arr, size));
}
}
// This code is contributed
// by anuj_67.
PHP
<?php
// Function to compute partition
function findElement(&$arr, $size)
{
$right_sum = 0;
$left_sum = 0;
// Computing right_sum
for ($i = 1; $i < $size; $i++)
$right_sum += $arr[$i];
// Checking the point of partition
// i.e. left_Sum == right_sum
for ($i = 0, $j = 1;
$j < $size; $i++, $j++)
{
$right_sum -= $arr[$j];
$left_sum += $arr[$i];
if ($left_sum == $right_sum)
return $arr[$i + 1];
}
return -1;
}
// Driver Code
$arr = array( 2, 3, 4, 1, 4, 5 );
$size = sizeof($arr);
echo findElement($arr, $size);
// This code is contributed
// by ChitraNayal
?>
JavaScript
<script>
// Function to compute partition
function findElement(arr) {
let right_sum = 0, left_sum = 0;
// Computing right_sum
for (let i = 1; i < arr.length; i++)
right_sum += arr[i];
// Checking the point of partition
// i.e. left_Sum == right_sum
for (let i = 0, j = 1; j < arr.length; i++, j++) {
right_sum -= arr[j];
left_sum += arr[i];
if (left_sum === right_sum)
return arr[i + 1];
}
return -1;
}
// Driver
let arr = [ 2, 3, 4, 1, 4, 5 ];
document.write(findElement(arr));
// This code is contributed by Surbhi Tyagi
</script>
Time complexity: O(n)
Auxiliary Space: O(1)
Method 4 (Both Time and Space Efficient)
We define two pointers i and j to traverse the array from left and right,
left_sum and right_sum to store sum from right and left respectively
If left_sum is lesser then increment i and if right_sum is lesser then decrement j
and, find a position where left_sum == right_sum and i and j are next to each other
Note: This solution is only applicable if the array contains only positive elements.
Below is the implementation of the above approach:
C++
// C++ program to find an element
// such that sum of right side element
// is equal to sum of left side
#include<bits/stdc++.h>
using namespace std;
// Function to compute
// partition
int findElement(int arr[],
int size)
{
int right_sum = 0,
left_sum = 0;
// Maintains left
// cumulative sum
left_sum = 0;
// Maintains right
// cumulative sum
right_sum = 0;
int i = -1, j = -1;
for(i = 0, j = size - 1;
i < j; i++, j--)
{
left_sum += arr[i];
right_sum += arr[j];
// Keep moving i towards
// center until left_sum
//is found lesser than right_sum
while(left_sum < right_sum &&
i < j)
{
i++;
left_sum += arr[i];
}
// Keep moving j towards
// center until right_sum is
// found lesser than left_sum
while(right_sum < left_sum &&
i < j)
{
j--;
right_sum += arr[j];
}
}
if(left_sum == right_sum && i == j)
return arr[i];
else
return -1;
}
// Driver code
int main()
{
int arr[] = {2, 3, 4,
1, 4, 5};
int size = sizeof(arr) /
sizeof(arr[0]);
cout << (findElement(arr, size));
}
// This code is contributed by shikhasingrajput
Java
// Java program to find an element
// such that sum of right side element
// is equal to sum of left side
public class Gfg {
// Function to compute partition
static int findElement(int arr[], int size)
{
int right_sum = 0, left_sum = 0;
// Maintains left cumulative sum
left_sum = 0;
// Maintains right cumulative sum
right_sum=0;
int i = -1, j = -1;
for( i = 0, j = size-1 ; i < j ; i++, j-- ){
left_sum += arr[i];
right_sum += arr[j];
// Keep moving i towards center until
// left_sum is found lesser than right_sum
while(left_sum < right_sum && i < j){
i++;
left_sum += arr[i];
}
// Keep moving j towards center until
// right_sum is found lesser than left_sum
while(right_sum < left_sum && i < j){
j--;
right_sum += arr[j];
}
}
if(left_sum == right_sum && i == j)
return arr[i];
else
return -1;
}
// Driver code
public static void main(String args[])
{
int arr[] = {2, 3, 4, 1, 4, 5};
int size = arr.length;
System.out.println(findElement(arr, size));
}
}
Python3
# Python3 program to find an element
# such that sum of right side element
# is equal to sum of left side
# Function to compute partition
def findElement(arr, size):
# Maintains left cumulative sum
left_sum = 0;
# Maintains right cumulative sum
right_sum = 0;
i = 0; j = -1;
j = size - 1;
while(i < j):
if(i < j):
left_sum += arr[i];
right_sum += arr[j];
# Keep moving i towards center
# until left_sum is found
# lesser than right_sum
while (left_sum < right_sum and
i < j):
i += 1;
left_sum += arr[i];
# Keep moving j towards center
# until right_sum is found
# lesser than left_sum
while (right_sum < left_sum and
i < j):
j -= 1;
right_sum += arr[j];
j -= 1
i += 1
if (left_sum == right_sum && i == j):
return arr[i];
else:
return -1;
# Driver code
if __name__ == '__main__':
arr = [2, 3, 4,
1, 4, 5];
size = len(arr);
print(findElement(arr, size));
# This code is contributed by shikhasingrajput
C#
// C# program to find an element
// such that sum of right side element
// is equal to sum of left side
using System;
class GFG{
// Function to compute partition
static int findElement(int []arr, int size)
{
int right_sum = 0, left_sum = 0;
// Maintains left cumulative sum
left_sum = 0;
// Maintains right cumulative sum
right_sum = 0;
int i = -1, j = -1;
for(i = 0, j = size - 1; i < j; i++, j--)
{
left_sum += arr[i];
right_sum += arr[j];
// Keep moving i towards center until
// left_sum is found lesser than right_sum
while (left_sum < right_sum && i < j)
{
i++;
left_sum += arr[i];
}
// Keep moving j towards center until
// right_sum is found lesser than left_sum
while (right_sum < left_sum && i < j)
{
j--;
right_sum += arr[j];
}
}
if (left_sum == right_sum && i == j)
return arr[i];
else
return -1;
}
// Driver code
public static void Main(String []args)
{
int []arr = { 2, 3, 4, 1, 4, 5 };
int size = arr.Length;
Console.WriteLine(findElement(arr, size));
}
}
// This code is contributed by Amit Katiyar
JavaScript
<script>
// javascript program to find an element
// such that sum of right side element
// is equal to sum of left side
// Function to compute partition
function findElement(arr , size) {
var right_sum = 0, left_sum = 0;
// Maintains left cumulative sum
left_sum = 0;
// Maintains right cumulative sum
right_sum = 0;
var i = -1, j = -1;
for (i = 0, j = size - 1; i < j; i++, j--) {
left_sum += arr[i];
right_sum += arr[j];
// Keep moving i towards center until
// left_sum is found lesser than right_sum
while (left_sum < right_sum && i < j) {
i++;
left_sum += arr[i];
}
// Keep moving j towards center until
// right_sum is found lesser than left_sum
while (right_sum < left_sum && i < j) {
j--;
right_sum += arr[j];
}
}
if (left_sum == right_sum && i == j)
return arr[i];
else
return -1;
}
// Driver code
var arr = [ 2, 3, 4, 1, 4, 5 ];
var size = arr.length;
document.write(findElement(arr, size));
// This code contributed by gauravrajput1
</script>
Since all loops start traversing from the last updated i and j pointers and do not cross each other, they run n times in the end.
Time Complexity - O(n)
Auxiliary Space - O(1)
Method 5 (The efficient algorithm):
- Here we define two pointers to the array -> start = 0, end = n-1
- Two variables to take care of sum -> left_sum = 0, right_sum = 0
Here our algorithm goes like this:
- We initialize for loop till the entire size of the array
- Basically we check if left_sum > right_sum => add the current end element to the right_sum and decrement end
- If right_sum < left_sum => add the current start element to the left_sum and increment start
- By these two conditions, we make sure that left_sum and right_sum are nearly balanced, so we can arrive at our solution easily
- To make this work during all test cases we need to add a couple of conditional statements to our logic:
- If the equilibrium element is found our start will be equal to the end variable and left_sum will be equal right_sum => return the equilibrium element (here we say start == end because we increment/ decrement the pointer after adding the current start/ end value to respective sum. So if, equilibrium element is found start and end should be at the same location)
- If start is equal to end variable but left_sum is not equal right_sum => no equilibrium element return -1
- If left_sum is equal right_sum, but start is not equal to end => we are still in the middle of the algorithm even though we found that left_sum is equal right_sum we haven't got that one required equilibrium element (So, in this case, add the current end element to the right_sum and decrement end (or) add the current start element to the left_sum and increment start, to make our algorithm continue further).
- Even here there is one test case that needs to be handled:
- When there is only one element in the array our algorithm exits without entering for a loop.
- So we can check if our functions enter the loop if not we can directly return the value as the answer.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
// Function to find equilibrium point
// a: input array
// n: size of array
int equilibriumPoint(int a[], int n)
{
// Here we define two pointers to the array -> start =
// 0, end = n-1 Two variables to take care of sum ->
// left_sum = 0, right_sum = 0
int i = 0, start = 0, end = n - 1, left_sum = 0,
right_sum = 0;
for (i = 0; i < n; i++) {
// if the equilibrium element is found our start
// will be equal to end variable and left_sum will
// be equal right_sum => return the equilibrium
// element
if (start == end && right_sum == left_sum)
return a[start];
// if start is equal to end variable but left_sum is
// not equal right_sum => no equilibrium element
// return -1
if (start == end)
return -1;
// if left_sum > right_sum => add the current end
// element to the right_sum and decrement end
if (left_sum > right_sum) {
right_sum += a[end];
end--;
}
// if right_sum < left_sum => add the current start
// element to the left_sum and increment start
else if (right_sum > left_sum) {
left_sum += a[start];
start++;
}
/*
if left_sum is equal right_sum but start is not
equal to end => we are still in the middle of
algorithm even though we found that left_sum is
equal right_sum we haven't got that one required
equilibrium element (So, in this case add the
current end element to the right_sum and
decrement end (or) add the current start element
to the left_sum and increment start, to make our
algorithm continue further)
*/
else {
right_sum += a[end];
end--;
}
}
// When there is only one element in array our algorithm
// exits without entering for loop So we can check if our
// functions enters the loop if not we can directly
// return the value as answer
if (!i) {
return a[0];
}
}
// Driver code
int main()
{
int arr[] = { 2, 3, 4, 1, 4, 5 };
int size = sizeof(arr) / sizeof(arr[0]);
cout << (equilibriumPoint(arr, size));
}
Java
/*package whatever //do not write package name here */
import java.io.*;
class GFG
{
// Function to find equilibrium point
// a: input array
// n: size of array
static int equilibriumPoint(int a[], int n)
{
// Here we define two pointers to the array -> start =
// 0, end = n-1 Two variables to take care of sum ->
// left_sum = 0, right_sum = 0
int i = 0, start = 0, end = n - 1, left_sum = 0,
right_sum = 0;
for (i = 0; i < n; i++)
{
// if the equilibrium element is found our start
// will be equal to end variable and left_sum will
// be equal right_sum => return the equilibrium
// element
if (start == end && right_sum == left_sum)
return a[start];
// if start is equal to end variable but left_sum is
// not equal right_sum => no equilibrium element
// return -1
if (start == end)
return -1;
// if left_sum > right_sum => add the current end
// element to the right_sum and decrement end
if (left_sum > right_sum)
{
right_sum += a[end];
end--;
}
// if right_sum < left_sum => add the current start
// element to the left_sum and increment start
else if (right_sum > left_sum)
{
left_sum += a[start];
start++;
}
/*
if left_sum is equal right_sum but start is not
equal to end => we are still in the middle of
algorithm even though we found that left_sum is
equal right_sum we haven't got that one required
equilibrium element (So, in this case add the
current end element to the right_sum and
decrement end (or) add the current start element
to the left_sum and increment start, to make our
algorithm continue further)
*/
else {
right_sum += a[end];
end--;
}
}
// When there is only one element in array our algorithm
// exits without entering for loop So we can check if our
// functions enters the loop if not we can directly
// return the value as answer
if (i == 0)
{
return a[0];
}
return -1;
}
// Driver code
public static void main (String[] args)
{
int arr[] = { 2, 3, 4, 1, 4, 5 };
int size = arr.length;
System.out.println(equilibriumPoint(arr, size));
}
}
// This code is contributed by avanitrachhadiya2155
Python3
# Function to find equilibrium point
# a: input array
# n: size of array
def equilibriumPoint(a, n):
# Here we define two pointers to the array -> start =
# 0, end = n-1 Two variables to take care of sum ->
# left_sum = 0, right_sum = 0
i,start,end,left_sum,right_sum = 0,0,n - 1,0,0
for i in range(n):
# if the equilibrium element is found our start
# will be equal to end variable and left_sum will
# be equal right_sum => return the equilibrium
# element
if (start == end and right_sum == left_sum):
return a[start]
# if start is equal to end variable but left_sum is
# not equal right_sum => no equilibrium element
# return -1
if (start == end):
return -1
# if left_sum > right_sum => add the current end
# element to the right_sum and decrement end
if (left_sum > right_sum):
right_sum += a[end]
end -= 1
# if right_sum < left_sum => add the current start
# element to the left_sum and increment start
elif (right_sum > left_sum):
left_sum += a[start]
start += 1
# if left_sum is equal right_sum but start is not
# equal to end => we are still in the middle of
# algorithm even though we found that left_sum is
# equal right_sum we haven't got that one required
# equilibrium element (So, in this case add the
# current end element to the right_sum and
# decrement end (or) add the current start element
# to the left_sum and increment start, to make our
# algorithm continue further)
else:
right_sum += a[end]
end -= 1
# When there is only one element in array our algorithm
# exits without entering for loop So we can check if our
# functions enters the loop if not we can directly
# return the value as answer
if (not i):
return a[0]
# Driver code
arr = [ 2, 3, 4, 1, 4, 5 ]
size = len(arr)
print(equilibriumPoint(arr, size))
# This code is contributed by Shinjanpatra
C#
using System;
public class GFG{
// Function to find equilibrium point
// a: input array
// n: size of array
static int equilibriumPoint(int[] a, int n)
{
// Here we define two pointers to the array -> start =
// 0, end = n-1 Two variables to take care of sum ->
// left_sum = 0, right_sum = 0
int i = 0, start = 0, end = n - 1, left_sum = 0,
right_sum = 0;
for (i = 0; i < n; i++)
{
// if the equilibrium element is found our start
// will be equal to end variable and left_sum will
// be equal right_sum => return the equilibrium
// element
if (start == end && right_sum == left_sum)
return a[start];
// if start is equal to end variable but left_sum is
// not equal right_sum => no equilibrium element
// return -1
if (start == end)
return -1;
// if left_sum > right_sum => add the current end
// element to the right_sum and decrement end
if (left_sum > right_sum)
{
right_sum += a[end];
end--;
}
// if right_sum < left_sum => add the current start
// element to the left_sum and increment start
else if (right_sum > left_sum)
{
left_sum += a[start];
start++;
}
/*
if left_sum is equal right_sum but start is not
equal to end => we are still in the middle of
algorithm even though we found that left_sum is
equal right_sum we haven't got that one required
equilibrium element (So, in this case add the
current end element to the right_sum and
decrement end (or) add the current start element
to the left_sum and increment start, to make our
algorithm continue further)
*/
else {
right_sum += a[end];
end--;
}
}
// When there is only one element in array our algorithm
// exits without entering for loop So we can check if our
// functions enters the loop if not we can directly
// return the value as answer
if (i == 0)
{
return a[0];
}
return -1;
}
// Driver code
static public void Main (){
int[] arr = { 2, 3, 4, 1, 4, 5 };
int size = arr.Length;
Console.WriteLine(equilibriumPoint(arr, size));
}
}
JavaScript
<script>
// Function to find equilibrium point
// a: input array
// n: size of array
function equilibriumPoint(a, n)
{
// Here we define two pointers to the array -> start =
// 0, end = n-1 Two variables to take care of sum ->
// left_sum = 0, right_sum = 0
let i = 0, start = 0, end = n - 1, left_sum = 0,
right_sum = 0;
for (i = 0; i < n; i++) {
// if the equilibrium element is found our start
// will be equal to end variable and left_sum will
// be equal right_sum => return the equilibrium
// element
if (start == end && right_sum == left_sum)
return a[start];
// if start is equal to end variable but left_sum is
// not equal right_sum => no equilibrium element
// return -1
if (start == end)
return -1;
// if left_sum > right_sum => add the current end
// element to the right_sum and decrement end
if (left_sum > right_sum) {
right_sum += a[end];
end--;
}
// if right_sum < left_sum => add the current start
// element to the left_sum and increment start
else if (right_sum > left_sum) {
left_sum += a[start];
start++;
}
/*
if left_sum is equal right_sum but start is not
equal to end => we are still in the middle of
algorithm even though we found that left_sum is
equal right_sum we haven't got that one required
equilibrium element (So, in this case add the
current end element to the right_sum and
decrement end (or) add the current start element
to the left_sum and increment start, to make our
algorithm continue further)
*/
else {
right_sum += a[end];
end--;
}
}
// When there is only one element in array our algorithm
// exits without entering for loop So we can check if our
// functions enters the loop if not we can directly
// return the value as answer
if (!i) {
return a[0];
}
}
// Driver code
let arr = [ 2, 3, 4, 1, 4, 5 ];
let size = arr.length;
document.write(equilibriumPoint(arr, size));
// This code is contributed by Surbhi Tyagi.
</script>
Time complexity: O(n)
Auxiliary Space: O(1)
Method 6: We can use divide and conquer to improve the number of traces to find an equilibrium point, as we know, most of the time a point comes from a mid, which can be considered as an idea to solve this problem
- We can consider that the equilibrium point is mid of the list
- If yes (left sum is equal to right sum) -- best case - return the index +1 (as that would be actual count by human)
- If not check where the weight is inclined either the left side or right side
a) perform the increase and decrease to get the new sum and return the index when equal, Also return -1 if inclination changes to what we had in beginning:
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int sum(int a[], int start, int end)
{
int result = 0;
for (int i = start; i < end; i++) {
result += a[i];
}
return result;
}
int equilibriumPoint(int A[], int n)
{
int index = n / 2;
int left_sum = sum(A, 0, index);
int right_sum = sum(A, index + 1, n);
if (left_sum == right_sum) {
return A[index];
}
else if (left_sum > right_sum) {
while (index >= 0) {
left_sum -= A[index - 1];
right_sum += A[index];
index -= 1;
if (right_sum > left_sum)
return -1;
else if (left_sum == right_sum)
return A[index];
}
}
else if (right_sum > left_sum) {
while (index <= n - 1) {
left_sum += A[index];
right_sum -= A[index + 1];
index += 1;
if (left_sum > right_sum)
return -1;
else if (left_sum == right_sum)
return A[index];
}
}
return -1;
}
// Driver code
int main()
{
int arr[] = { 2, 3, 4, 1, 4, 5 };
int size = sizeof(arr) / sizeof(arr[0]);
cout << (equilibriumPoint(arr, size));
}
Java
import java.io.*;
class GFG {
static int sum(int a[],int start,int end)
{
int result=0;
for(int i=start;i<end;i++)
{
result+=a[i];
}
return result;
}
public static int equilibriumPoint(int A[], int n) {
int index = n/2;
int left_sum = sum(A,0,index);
int right_sum = sum(A,index+1,n);
if(left_sum == right_sum)
{
return A[index];
}
else if(left_sum > right_sum)
{
while(index >= 0)
{
left_sum -= A[index-1];
right_sum += A[index];
index -= 1;
if(right_sum > left_sum)
return -1;
else if(left_sum == right_sum)
return A[index];
}
}
else if(right_sum > left_sum)
{
while(index <= n-1)
{
left_sum += A[index];
right_sum -= A[index+1];
index += 1;
if (left_sum > right_sum)
return -1;
else if (left_sum == right_sum)
return A[index];
}
}
return -1;
}
// Driver code
public static void main (String[] args)
{
int arr[] = { 2, 3, 4, 1, 4, 5 };
int size = arr.length;
System.out.println(equilibriumPoint(arr, size));
}
}
Python3
def sum(A):
result = 0
for item in A:
result += item
return result
def equilibriumPoint(A, N):
index = N // 2
left_sum = sum(A[:index])
right_sum = sum(A[index+1:])
if left_sum == right_sum:
return A[index]
elif left_sum > right_sum:
while(index >= 0):
left_sum -= A[index-1]
right_sum += A[index]
index -= 1
if right_sum > left_sum:
return -1
elif left_sum == right_sum:
return A[index]
elif right_sum > left_sum:
while(index <= N-1):
left_sum += A[index]
right_sum -= A[index+1]
index += 1
if left_sum > right_sum:
return -1
elif left_sum == right_sum:
return A[index]
else:
return -1
# Driver code
arr = [ 2, 3, 4, 1, 4, 5 ]
size = len(arr)
print(equilibriumPoint(arr, size))
C#
using System;
public class GFG{
static int sum(int[] A,int start,int end)
{
int result=0;
for(int i=start;i<end;i++)
{
result+=A[i];
}
return result;
}
static int equilibriumPoint(int[] A, int n)
{
int index = n / 2;
int left_sum = sum(A, 0, index);
int right_sum = sum(A, index + 1, n);
if (left_sum == right_sum) {
return A[index];
}
else if (left_sum > right_sum) {
while (index >= 0) {
left_sum -= A[index - 1];
right_sum += A[index];
index -= 1;
if (right_sum > left_sum)
return -1;
else if (left_sum == right_sum)
return A[index];
}
}
else if (right_sum > left_sum) {
while (index <= n - 1) {
left_sum += A[index];
right_sum -= A[index + 1];
index += 1;
if (left_sum > right_sum)
return -1;
else if (left_sum == right_sum)
return A[index];
}
}
return -1;
}
// Driver code
static public void Main (){
int[] arr = new int []{ 2, 3, 4, 1, 4, 5 };
int size = arr.Length;
Console.WriteLine(equilibriumPoint(arr, size));
}
}
JavaScript
// JS code for above approach
function sum(a, start, end)
{
let result = 0;
for (let i = start; i < end; i++) {
result += a[i];
}
return result;
}
function equilibriumPoint(A, n)
{
let index = n / 2;
let left_sum = sum(A, 0, index);
let right_sum = sum(A, index + 1, n);
if (left_sum == right_sum) {
return A[index];
}
else if (left_sum > right_sum) {
while (index >= 0) {
left_sum -= A[index - 1];
right_sum += A[index];
index -= 1;
if (right_sum > left_sum)
return -1;
else if (left_sum == right_sum)
return A[index];
}
}
else if (right_sum > left_sum) {
while (index <= n - 1) {
left_sum += A[index];
right_sum -= A[index + 1];
index += 1;
if (left_sum > right_sum)
return -1;
else if (left_sum == right_sum)
return A[index];
}
}
return -1;
}
// Driver code
let arr = [ 2, 3, 4, 1, 4, 5 ];
let size = arr.length;
console.log(equilibriumPoint(arr, size));
// This code is contributed by adityamaharshi21
Time complexity: O(n)
Auxiliary Space: O(1)
Equilibrium point | SDE Sheet | Arrays
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem