Depth-First Search (DFS) is a method used to explore all the nodes in a tree by going as deep as possible along each branch before moving to the next one. It starts at the root node and visits every node in the tree.
Depth-First Search (DFS) can be classified into three main types based on the order in which the nodes are visited:
- Pre-order Traversal: Visits the root node first, then recursively explores the left and right subtrees.
- In-order Traversal: Explores the left subtree first, then visits the root, and finally the right subtree.
- Post-order Traversal: Explores the left and right subtrees first, then visits the root node.
Different DFS Traversals of a Tree
1. Inorder Traversal
- Traverse the left subtree, i.e., call Inorder(left-subtree)
- Visit the root
- Traverse the right subtree, i.e., call Inorder(right-subtree)
C++
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct Node {
int data;
struct Node *left, *right;
Node(int data)
{
this->data = data;
left = right = NULL;
}
};
/* Given a binary tree, print its nodes in inorder*/
void printInorder(struct Node* node)
{
if (node == NULL)
return;
/* first recur on left child */
printInorder(node->left);
/* then print the data of node */
cout << node->data << " ";
/* now recur on right child */
printInorder(node->right);
}
int main()
{
struct Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->right = new Node(6);
printInorder(root);
return 0;
}
C
#include <stdio.h>
#include <stdlib.h>
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node {
int data;
struct node* left;
struct node* right;
};
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct node* newNode(int data)
{
struct node* node
= (struct node*)malloc(sizeof(struct node));
node->data = data;
node->left = NULL;
node->right = NULL;
return (node);
}
/* Given a binary tree, print its nodes in inorder*/
void printInorder(struct node* node)
{
if (node == NULL)
return;
/* first recur on left child */
printInorder(node->left);
/* then print the data of node */
printf("%d ", node->data);
/* now recur on right child */
printInorder(node->right);
}
int main()
{
struct node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->right = newNode(6);
printInorder(root);
getchar();
return 0;
}
Java
class Node {
int key;
Node left, right;
public Node(int item)
{
key = item;
left = right = null;
}
}
class GfG {
// Root of Binary Tree
Node root;
BinaryTree() { root = null; }
/* Given a binary tree, print its nodes in inorder*/
void printInorder(Node node)
{
if (node == null)
return;
/* first recur on left child */
printInorder(node.left);
/* then print the data of node */
System.out.print(node.key + " ");
/* now recur on right child */
printInorder(node.right);
}
// Wrappers over above recursive functions
void printInorder() { printInorder(root); }
public static void main(String[] args)
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(1);
tree.root.left = new Node(2);
tree.root.right = new Node(3);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(5);
tree.root.right.right = new Node(6);
tree.printInorder();
}
}
Python
class Node:
def __init__(self, key):
self.left = None
self.right = None
self.val = key
# A function to do inorder tree traversal
def printInorder(root):
if root:
# First recur on left child
printInorder(root.left)
# then print the data of node
print(root.val),
# now recur on right child
printInorder(root.right)
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.right = Node(6)
printInorder(root)
C#
using System;
/* Class containing left and right child of current
node and key value*/
class Node {
public int key;
public Node left, right;
public Node(int item)
{
key = item;
left = right = null;
}
}
public class BinaryTree {
// Root of Binary Tree
Node root;
BinaryTree() { root = null; }
/* Given a binary tree, print its nodes in inorder*/
void printInorder(Node node)
{
if (node == null)
return;
/* first recur on left child */
printInorder(node.left);
/* then print the data of node */
Console.Write(node.key + " ");
/* now recur on right child */
printInorder(node.right);
}
// Wrappers over above recursive functions
void printInorder() { printInorder(root); }
public static void Main(String[] args)
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(1);
tree.root.left = new Node(2);
tree.root.right = new Node(3);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(5);
tree.root.right.right = new Node(6);
tree.printInorder();
}
}
JavaScript
class Node {
constructor(val) {
this.key = val;
this.left = null;
this.right = null;
}
}
/* Given a binary tree, print its nodes in inorder */
function printInorder(node) {
if (node == null)
return;
/* first recur on left child */
printInorder(node.left);
/* then print the data of node */
process.stdout.write(node.key + " ");
/* now recur on right child */
printInorder(node.right);
}
var root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(6);
printInorder(root);
OutputInorder traversal of binary tree is
4 2 5 1 3
Time Complexity: O(N)
Auxiliary Space: O(log N)
Uses of Inorder Traversal
In the case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing order. To get nodes of BST in non-increasing order, a variation of Inorder traversal where Inorder traversal is reversed can be used.
2. Preorder Traversal
- Visit the root
- Traverse the left subtree, i.e., call Preorder(left-subtree)
- Traverse the right subtree, i.e., call Preorder(right-subtree)
C++
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct Node {
int data;
struct Node *left, *right;
Node(int data)
{
this->data = data;
left = right = NULL;
}
};
/* Given a binary tree, print its nodes in preorder*/
void printPreorder(struct Node* node)
{
if (node == NULL)
return;
/* first print data of node */
cout << node->data << " ";
/* then recur on left subtree */
printPreorder(node->left);
/* now recur on right subtree */
printPreorder(node->right);
}
int main()
{
struct Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->right = new Node(6);
printPreorder(root);
return 0;
}
C
#include <stdio.h>
#include <stdlib.h>
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node {
int data;
struct node* left;
struct node* right;
};
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct node* newNode(int data)
{
struct node* node
= (struct node*)malloc(sizeof(struct node));
node->data = data;
node->left = NULL;
node->right = NULL;
return (node);
}
/* Given a binary tree, print its nodes in preorder*/
void printPreorder(struct node* node)
{
if (node == NULL)
return;
/* first print data of node */
printf("%d ", node->data);
/* then recur on left subtree */
printPreorder(node->left);
/* now recur on right subtree */
printPreorder(node->right);
}
int main()
{
struct node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->right = newNode(6);
printPreorder(root);
getchar();
return 0;
}
Java
class Node {
int key;
Node left, right;
public Node(int item)
{
key = item;
left = right = null;
}
}
class BinaryTree {
// Root of Binary Tree
Node root;
BinaryTree() { root = null; }
/* Given a binary tree, print its nodes in preorder*/
void printPreorder(Node node)
{
if (node == null)
return;
/* first print data of node */
System.out.print(node.key + " ");
/* then recur on left subtree */
printPreorder(node.left);
/* now recur on right subtree */
printPreorder(node.right);
}
// Wrappers over above recursive functions
void printPreorder() { printPreorder(root); }
// Driver code
public static void main(String[] args)
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(1);
tree.root.left = new Node(2);
tree.root.right = new Node(3);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(5);
tree.root.left.right = new Node(6);
tree.printPreorder();
}
}
Python
class Node:
def __init__(self, key):
self.left = None
self.right = None
self.val = key
# A function to do preorder tree traversal
def printPreorder(root):
if root:
# First print the data of node
print(root.val),
# Then recur on left child
printPreorder(root.left)
# Finally recur on right child
printPreorder(root.right)
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.left.right = Node(6)
printPreorder(root)
C#
using System;
/* Class containing left and right child of current
node and key value*/
public class Node {
public int key;
public Node left, right;
public Node(int item)
{
key = item;
left = right = null;
}
}
public class BinaryTree {
// Root of Binary Tree
Node root;
BinaryTree() { root = null; }
/* Given a binary tree, print its nodes in preorder*/
void printPreorder(Node node)
{
if (node == null)
return;
/* first print data of node */
Console.Write(node.key + " ");
/* then recur on left subtree */
printPreorder(node.left);
/* now recur on right subtree */
printPreorder(node.right);
}
// Wrappers over above recursive functions
void printPreorder() { printPreorder(root); }
public static void Main()
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(1);
tree.root.left = new Node(2);
tree.root.right = new Node(3);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(5);
tree.root.left.right = new Node(6);
tree.printPreorder();
}
}
JavaScript
// A class that represents an individual node in a
// Binary Tree
class Node{
constructor(key){
this.left = null
this.right = null
this.val = key
}
}
// A function to do preorder tree traversal
function printPreorder(root){
if(root){
// First print the data of node
process.stdout.write(root.val," ")
// Then recur on left child
printPreorder(root.left)
// Finally recur on right child
printPreorder(root.right)
}
}
let root = new Node(1)
root.left = new Node(2)
root.right = new Node(3)
root.left.left = new Node(4)
root.left.right = new Node(5)
printPreorder(root)
OutputPreorder traversal of binary tree is
1 2 4 5 3
Time Complexity: O(N)
Auxiliary Space: O(log N)
Uses of Preorder Traversal
Preorder traversal is used to create a copy of the tree. Preorder traversal is also used to get prefix expressions of an expression tree.
3. Postorder Traversal
- Traverse the left subtree, i.e., call Postorder(left-subtree)
- Traverse the right subtree, i.e., call Postorder(right-subtree)
- Visit the root
C++
// C program for different tree traversals
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct Node {
int data;
struct Node *left, *right;
Node(int data)
{
this->data = data;
left = right = NULL;
}
};
/* Given a binary tree, print its nodes according to the
"bottom-up" postorder traversal. */
void printPostorder(struct Node* node)
{
if (node == NULL)
return;
// first recur on left subtree
printPostorder(node->left);
// then recur on right subtree
printPostorder(node->right);
// now deal with the node
cout << node->data << " ";
}
int main()
{
struct Node* root = new Node(1);
root->left = new Node(2);
root->right = new Node(3);
root->left->left = new Node(4);
root->left->right = new Node(5);
root->right->right = new Node(6);
printPostorder(root);
return 0;
}
C
#include <stdio.h>
#include <stdlib.h>
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node {
int data;
struct node* left;
struct node* right;
};
/* Helper function that allocates a new node with the
given data and NULL left and right pointers. */
struct node* newNode(int data)
{
struct node* node
= (struct node*)malloc(sizeof(struct node));
node->data = data;
node->left = NULL;
node->right = NULL;
return (node);
}
/* Given a binary tree, print its nodes according to the
"bottom-up" postorder traversal. */
void printPostorder(struct node* node)
{
if (node == NULL)
return;
// first recur on left subtree
printPostorder(node->left);
// then recur on right subtree
printPostorder(node->right);
// now deal with the node
printf("%d ", node->data);
}
int main()
{
struct node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(3);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right->right = newNode(6);
printPostorder(root);
getchar();
return 0;
}
Java
// Java program for different tree traversals
/* Class containing left and right child of current
node and key value*/
class Node {
int key;
Node left, right;
public Node(int item)
{
key = item;
left = right = null;
}
}
class BinaryTree {
// Root of Binary Tree
Node root;
BinaryTree() { root = null; }
/* Given a binary tree, print its nodes according to the
"bottom-up" postorder traversal. */
void printPostorder(Node node)
{
if (node == null)
return;
// first recur on left subtree
printPostorder(node.left);
// then recur on right subtree
printPostorder(node.right);
// now deal with the node
System.out.print(node.key + " ");
}
// Wrappers over above recursive functions
void printPostorder() { printPostorder(root); }
public static void main(String[] args)
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(1);
tree.root.left = new Node(2);
tree.root.right = new Node(3);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(5);
tree.root.right.right = new Node(6);
tree.printPostorder();
}
}
Python
# Python3 program to for tree traversals
# A class that represents an individual node in a
# Binary Tree
class Node:
def __init__(self, key):
self.left = None
self.right = None
self.val = key
# A function to do postorder tree traversal
def printPostorder(root):
if root:
# First recur on left child
printPostorder(root.left)
# the recur on right child
printPostorder(root.right)
# now print the data of node
print(root.val),
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.right = Node(6)
printPostorder(root)
C#
// C# program for different tree traversals
using System;
/* Class containing left and right child of current
node and key value*/
public class Node {
public int key;
public Node left, right;
public Node(int item)
{
key = item;
left = right = null;
}
}
public class BinaryTree {
// Root of Binary Tree
Node root;
BinaryTree() { root = null; }
/* Given a binary tree, print its nodes according to the
"bottom-up" postorder traversal. */
void printPostorder(Node node)
{
if (node == null)
return;
// first recur on left subtree
printPostorder(node.left);
// then recur on right subtree
printPostorder(node.right);
// now deal with the node
Console.Write(node.key + " ");
}
// Wrappers over above recursive functions
void printPostorder() { printPostorder(root); }
public static void Main(String[] args)
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(1);
tree.root.left = new Node(2);
tree.root.right = new Node(3);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(5);
tree.root.right.right = new Node(6);
tree.printPostorder();
}
}
JavaScript
/* Class containing left and right child of current
node and key value*/
class Node {
constructor(item) {
this.key = item;
this.left = this.right = null;
}
}
var root;
/*
* Given a binary tree, print its nodes according to the "bottom-up" postorder
* traversal.
*/
function printPostorder(node) {
if (node == null)
return;
// first recur on left subtree
printPostorder(node.left);
// then recur on right subtree
printPostorder(node.right);
// now deal with the node
process.stdout.write(node.key + " ");
}
root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.right = new Node(6);
printPostorder(root);
OutputPostorder traversal of binary tree is
4 5 2 3 1
Time Complexity: O(N)
Auxiliary Space: O(log N)
Uses of Postorder Traversal:
Postorder traversal is used to delete every node of the tree. Postorder traversal is also useful to get the postfix expression of an expression tree
Related Article : Breadth First Traversal.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem