Palindrome Substrings Count
Last Updated :
04 Aug, 2025
Given a string s, find the total number of palindromic substrings of length greater than or equal to 2 present in the string.
A substring is palindromic if it reads the same forwards and backwards.
Examples:
Input: s = "abaab"
Output: 3
Explanation: Palindromic substrings with length greater than 1, are "aba", "aa", and "baab".
Input: s = "aaa"
Output: 3
Explanation: Palindromic substrings with length greater than 1, are "aa" , "aa" , "aaa" .
Input: s = "abbaeae"
Output: 4
Explanation: Palindromic substrings with length greater than 1, are "bb" , "abba" , "aea", "eae".
[Naive Approach] By Generating All Possible Substrings - O(n^3) Time and O(1) Space
The idea is to generate all possible substrings using two nested loops and for every substring check if it is palindrome or not.
C++
// C++ program to count all palindromic substring of
// given string by generating all possible substrings
#include <iostream>
#include <string>
using namespace std;
// Function to check if a substring
// s[i..j] is a palindrome
bool isPalindrome(string& s, int i, int j) {
while (i < j) {
if (s[i] != s[j]) return false;
i++;
j--;
}
return true;
}
int countPS(string& s) {
int n = s.length();
// Consider all possible substrings of lengths
// more than 1
int res = 0;
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
// If substring from i to j is palindrome
// increment the result
if (isPalindrome(s, i, j))
res++;
}
}
return res;
}
int main() {
string s = "abaab";
cout << countPS(s);
return 0;
}
Java
// Java program to count all palindromic substring of
// given string by generating all possible substrings
class GfG {
// Function to check if a substring
// s[i..j] is a palindrome
static boolean isPalindrome(String s, int i, int j) {
while (i < j) {
if (s.charAt(i) != s.charAt(j)) return false;
i++;
j--;
}
return true;
}
static int countPS(String s) {
int n = s.length();
// Consider all possible substrings of lengths
// more than 1
int res = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// If substring from i to j is palindrome
// increment the result
if (isPalindrome(s, i, j))
res++;
}
}
return res;
}
public static void main(String[] args) {
String s = "abaab";
System.out.println(countPS(s));
}
}
Python
# Python program to count all palindromic substring of
# given string by generating all possible substrings
# Function to check if a substring
# s[i..j] is a palindrome
def isPalindrome(s, i, j):
while i < j:
if s[i] != s[j]:
return False
i += 1
j -= 1
return True
def countPS(s):
n = len(s)
# Consider all possible substrings of lengths
# more than 1
res = 0
for i in range(n):
for j in range(i + 1, n):
# If substring from i to j is palindrome
# increment the result
if isPalindrome(s, i, j):
res += 1
return res
if __name__ == "__main__":
s = "abaab"
print(countPS(s))
C#
// C# program to count all palindromic substring of
// given string by generating all possible substrings
using System;
class GfG {
// Function to check if a substring
// s[i..j] is a palindrome
static bool isPalindrome(string s, int i, int j) {
while (i < j) {
if (s[i] != s[j]) return false;
i++;
j--;
}
return true;
}
static int countPS(string s) {
int n = s.Length;
// Consider all possible substrings of lengths
// more than 1
int res = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// If substring from i to j is palindrome
// increment the result
if (isPalindrome(s, i, j))
res++;
}
}
return res;
}
static void Main() {
string s = "abaab";
Console.WriteLine(countPS(s));
}
}
JavaScript
// JavaScript program to count all palindromic substring
// of given string by generating all possible substrings
function isPalindrome(s, i, j) {
while (i < j) {
if (s[i] !== s[j]) return false;
i++;
j--;
}
return true;
}
function countPS(s) {
let n = s.length;
// Consider all possible substrings of lengths
// more than 1
let res = 0;
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
// If substring from i to j is palindrome
// increment the result
if (isPalindrome(s, i, j))
res++;
}
}
return res;
}
// Driver Code
let s = "abaab";
console.log(countPS(s));
[Better Approach 1] Using Memoization - O(n^2) Time and O(n^2) Space
If we notice carefully, we can observe that this recursive solution holds the following two properties of Dynamic Programming:
1.Optimal Substructure: The solution for the problem isPalindrome(i, j) depends on the optimal solution of the subproblem isPalindrome(i + 1, j - 1). By solving the smaller substructures, we can efficiently find if the entire substring is a palindrome or not.
2.Overlapping Subproblems: We can see that we are computing the same subproblems multiple times, isPalindrome(i + 2, j - 2) will be computed in isPalindrome(i, j) as well as isPalindrome(i + 1, j - 1). This redundancy leads to overlapping subproblems.
- There are two parameters(i and j) that change in the recursive solution and then can go from 0 to n. So we create a 2D array of size n x n for memoization.
- We initialize this array as -1 to indicate nothing is computed initially. We first check if the value is -1, then only we make recursive calls.
- If the substring from i to j is a palindrome, we store memo[i][j] = 1, otherwise 0.
C++
// C++ program to count all palindromic substring of
// given string using memoization
#include <iostream>
#include <vector>
#include <string>
using namespace std;
int isPalindrome(int i, int j, string& s,
vector<vector<int>>& memo) {
// One length string is always palindrome
if (i == j)
return 1;
// Two length string is plaindrome if
// both characters are same
if (j == i + 1 && s[i] == s[j])
return 1;
// if current substring is already checked
if (memo[i][j] != -1)
return memo[i][j];
// Check if the characters at i and j are equal
// and the substring inside is palindrome
memo[i][j] = (s[i] == s[j] &&
isPalindrome(i + 1, j - 1, s, memo));
return memo[i][j];
}
int countPS(string& s) {
int n = s.length();
// Memoization table
vector<vector<int>> memo(n, vector<int>(n, -1));
int res = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// Check if the substring is palindrome
if (isPalindrome(i, j, s, memo)) {
res++;
}
}
}
return res;
}
int main() {
string s = "abaab";
cout << countPS(s);
return 0;
}
Java
// Java program to count all palindromic substring of given
// string using memoization
import java.util.Arrays;
class GfG {
static int isPalindrome(int i, int j, String s,
int[][] memo) {
// One length string is always palindrome
if (i == j)
return 1;
// Two length string is palindrome if
// both characters are same
if (j == i + 1 && s.charAt(i) == s.charAt(j))
return 1;
// if current substring is already checked
if (memo[i][j] != -1)
return memo[i][j];
// Check if the characters at i and j are equal
// and the substring inside is palindrome
if(s.charAt(i) == s.charAt(j) &&
isPalindrome(i + 1, j - 1, s, memo) == 1)
memo[i][j] = 1;
else
memo[i][j] = 0;
return memo[i][j];
}
static int countPS(String s) {
int n = s.length();
// Memoization table
int[][] memo = new int[n][n];
for (int[] row : memo) {
Arrays.fill(row, -1);
}
int res = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// Check if the substring is palindrome
if (isPalindrome(i, j, s, memo) == 1) {
res++;
}
}
}
return res;
}
public static void main(String[] args) {
String s = "abaab";
System.out.println(countPS(s));
}
}
Python
# Python program to count all palindromic substrings of
# a given string using memoization
def isPalindrome(i, j, s, memo):
# One length string is always palindrome
if i == j:
return 1
# Two length string is palindrome if
# both characters are same
if j == i + 1 and s[i] == s[j]:
return 1
# if current substring is already checked
if memo[i][j] != -1:
return memo[i][j]
# Check if the characters at i and j are equal
# and the substring inside is palindrome
if s[i] == s[j] and isPalindrome(i + 1, j - 1, s, memo) == 1:
memo[i][j] = 1
else:
memo[i][j] = 0
return memo[i][j]
def countPS(s):
n = len(s)
# Memoization table
memo = [[-1 for i in range(n)] for i in range(n)]
res = 0
for i in range(n):
for j in range(i + 1, n):
# Check if the substring is palindrome
if isPalindrome(i, j, s, memo) == 1:
res += 1
return res
if __name__ == "__main__":
s = "abaab"
print(countPS(s))
C#
// C# program to count all palindromic substrings of
// a given string using memoization
using System;
class GfG {
static int IsPalindrome(int i, int j, string s,
int[,] memo) {
// One length string is always palindrome
if (i == j)
return 1;
// Two length string is palindrome if
// both characters are same
if (j == i + 1 && s[i] == s[j])
return 1;
// if current substring is already checked
if (memo[i, j] != -1)
return memo[i, j];
// Check if the characters at i and j are equal
// and the substring inside is palindrome
if (s[i] == s[j] &&
IsPalindrome(i + 1, j - 1, s, memo) == 1) {
memo[i, j] = 1;
}
else {
memo[i, j] = 0;
}
return memo[i, j];
}
static int CountPS(string s) {
int n = s.Length;
// Memoization table
int[,] memo = new int[n, n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
memo[i, j] = -1;
}
}
int res = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
// Check if the substring is palindrome
if (IsPalindrome(i, j, s, memo) == 1) {
res++;
}
}
}
return res;
}
static void Main() {
string s = "abaab";
Console.WriteLine(CountPS(s));
}
}
JavaScript
// JavaScript program to count all palindromic substrings of
// a given string using memoization
function isPalindrome(i, j, s, memo) {
// One length string is always palindrome
if (i === j)
return 1;
// Two length string is palindrome if
// both characters are same
if (j === i + 1 && s[i] === s[j])
return 1;
// if current substring is already checked
if (memo[i][j] !== -1)
return memo[i][j];
// Check if the characters at i and j are equal
// and the substring inside is palindrome
if (s[i] === s[j] &&
isPalindrome(i + 1, j - 1, s, memo) === 1)
memo[i][j] = 1;
else
memo[i][j] = 0;
return memo[i][j];
}
function countPS(s) {
const n = s.length;
// Memoization table
const memo = Array.from({ length: n }, () => Array(n).fill(-1));
let res = 0;
for (let i = 0; i < n; i++) {
for (let j = i + 1; j < n; j++) {
// Check if the substring is palindrome
if (isPalindrome(i, j, s, memo) === 1) {
res++;
}
}
}
return res;
}
// Driver Code
const s = "abaab";
console.log(countPS(s));
[Better Approach 2] Using Bottom-Up DP (Tabulation) - O(n^2) Time and O(n^2) Space
We create a dp array of size n x n. However, we cannot simply fill the dp table from i = 0 to n-1 and j from i to n-1. To compute the value for (i, j), we need the value from (i+1, j-1). Similar to Matrix Chain Multiplication, we need to fill the table diagonally using a gap variable.
1. Base Cases:
=> A single character string is always palindrome, i.e. dp[i][i] = true.
=> Strings having two characters are palindrome, if both the characters are same. i.e. dp[i][i+1] = true if s[i] == s[i+1].
2. Any substring s[i...j] will be palindrome if:
=> If first and last characters of string are same
=> Remaining substring (excluding first and last character) is palindrome. I.e. dp[i+1][j-1] = true.
Illustration:
C++
// C++ program to count all palindromic substring of
// given string using bottom up DP
#include <iostream>
#include <vector>
#include <string>
using namespace std;
int countPS(string& s) {
int n = s.length();
int res = 0;
vector<vector<bool>> dp(n, vector<bool>(n, false));
// One length string is always palindrome
for (int i = 0; i < n; i++) {
dp[i][i] = true;
}
// Two length string is plaindrome if
// both characters are same
for (int i = 0; i < n - 1; i++) {
if (s[i] == s[i + 1]) {
dp[i][i + 1] = true;
res++;
}
}
// Handle palindromes of length
// greater than 2 (gap >= 2)
for (int gap = 2; gap < n; gap++) {
for (int i = 0; i < n - gap; i++) {
int j = i + gap;
// Check if the current string is a palindrome
if (s[i] == s[j] && dp[i + 1][j - 1]) {
dp[i][j] = true;
res++;
}
}
}
return res;
}
int main() {
string s = "abaab";
cout << countPS(s) << endl;
return 0;
}
Java
// Java program to count all palindromic substrings of
// given string using bottom-up DP
import java.util.*;
class GfG {
static int countPS(String s) {
int n = s.length();
int res = 0;
boolean[][] dp = new boolean[n][n];
// One length string is always palindrome
for (int i = 0; i < n; i++) {
dp[i][i] = true;
}
// Two length string is palindrome if
// both characters are same
for (int i = 0; i < n - 1; i++) {
if (s.charAt(i) == s.charAt(i + 1)) {
dp[i][i + 1] = true;
res++;
}
}
// Handle palindromes of length greater than 2
for (int gap = 2; gap < n; gap++) {
for (int i = 0; i < n - gap; i++) {
int j = i + gap;
// Check if the current string is a palindrome
if (s.charAt(i) == s.charAt(j) && dp[i + 1][j - 1]) {
dp[i][j] = true;
res++;
}
}
}
return res;
}
public static void main(String[] args) {
String s = "abaab";
System.out.println(countPS(s));
}
}
Python
# Python program to count all palindromic substrings of
# given string using bottom-up DP
def countPS(s):
n = len(s)
res = 0
dp = [[False] * n for i in range(n)]
# One length string is always palindrome
for i in range(n):
dp[i][i] = True
# Two length string is palindrome if
# both characters are same
for i in range(n - 1):
if s[i] == s[i + 1]:
dp[i][i + 1] = True
res += 1
# Handle palindromes of length
# greater than 2 (gap >= 2)
for gap in range(2, n):
for i in range(n - gap):
j = i + gap
# Check if the current string is a palindrome
if s[i] == s[j] and dp[i + 1][j - 1]:
dp[i][j] = True
res += 1
return res
if __name__ == "__main__":
s = "abaab"
print(countPS(s))
C#
// C# program to count all palindromic substrings of
// given string using bottom-up DP
using System;
class GfG {
static int countPS(string s) {
int n = s.Length;
int res = 0;
bool[,] dp = new bool[n, n];
// One length string is always palindrome
for (int i = 0; i < n; i++) {
dp[i, i] = true;
}
// Two length string is palindrome if
// both characters are same
for (int i = 0; i < n - 1; i++) {
if (s[i] == s[i + 1]) {
dp[i, i + 1] = true;
res++;
}
}
// Handle palindromes of length
// greater than 2 (gap >= 2)
for (int gap = 2; gap < n; gap++) {
for (int i = 0; i < n - gap; i++) {
int j = i + gap;
// Check if the current string is a palindrome
if (s[i] == s[j] && dp[i + 1, j - 1]) {
dp[i, j] = true;
res++;
}
}
}
return res;
}
static void Main() {
string s = "abaab";
Console.WriteLine(countPS(s));
}
}
JavaScript
// JavaScript program to count all palindromic substrings of
// given string using bottom-up DP
function countPS(s) {
const n = s.length;
let res = 0;
const dp = Array.from({ length: n }, () => Array(n).fill(false));
// One length string is always palindrome
for (let i = 0; i < n; i++) {
dp[i][i] = true;
}
// Two length string is palindrome if
// both characters are same
for (let i = 0; i < n - 1; i++) {
if (s[i] === s[i + 1]) {
dp[i][i + 1] = true;
res++;
}
}
// Handle palindromes of length
// greater than 2 (gap >= 2)
for (let gap = 2; gap < n; gap++) {
for (let i = 0; i < n - gap; i++) {
const j = i + gap;
// Check if the current string is a palindrome
if (s[i] === s[j] && dp[i + 1][j - 1]) {
dp[i][j] = true;
res++;
}
}
}
return res;
}
// Driver Code
const s = "abaab";
console.log(countPS(s));
This problem can be solved more efficiently using Manacher’s algorithm or the center expansion technique.
See: Count All Palindrome Sub-Strings Set 2
Related article:
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem