Count number of elements between two given elements in array
Last Updated :
10 Oct, 2022
Given an unsorted array of n elements and also given two points num1 and num2. The task is to count number of elements occurs between the given points (excluding num1 and num2).
If there are multiple occurrences of num1 and num2, we need to consider leftmost occurrence of num1 and rightmost occurrence of num2.
Examples:
Input : arr[] = {3 5 7 6 4 9 12 4 8}
num1 = 5
num2 = 4
Output : 5
Number of elements between leftmost occurrence
of 5 and rightmost occurrence of 4 is five.
Input : arr[] = {4, 6, 8, 3, 6, 2, 8, 9, 4}
num1 = 4
num2 = 4
Output : 7
Input : arr[] = {4, 6, 8, 3, 6, 2, 8, 9, 4}
num1 = 4
num2 = 10
Output : 0
The solution should traverse array only once in all cases (when single or both elements are not present)
The idea is to traverse array from left and find first occurrence of num1. If we reach end, we return 0. Then we traverse from rightmost element and find num2. We traverse only till the point which is greater than index of num1. If we reach end, we return 0. If we found both elements, we return count using indexes of found elements.
Implementation:
CPP
// Program to count number of elements between
// two given elements.
#include <bits/stdc++.h>
using namespace std;
// Function to count number of elements
// occurs between the elements.
int getCount(int arr[], int n, int num1, int num2)
{
// Find num1
int i = 0;
for (i = 0; i < n; i++)
if (arr[i] == num1)
break;
// If num1 is not present or present at end
if (i >= n-1)
return 0;
// Find num2
int j;
for (j = n-1; j >= i+1; j--)
if (arr[j] == num2)
break;
// If num2 is not present
if (j == i)
return 0;
// return number of elements between
// the two elements.
return (j - i - 1);
}
// Driver Code
int main()
{
int arr[] = { 3, 5, 7, 6, 4, 9, 12, 4, 8 };
int n = sizeof(arr) / sizeof(arr[0]);
int num1 = 5, num2 = 4;
cout << getCount(arr, n, num1, num2);
return 0;
}
Java
// Program to count number of elements
// between two given elements.
import java.io.*;
class GFG
{
// Function to count number of elements
// occurs between the elements.
static int getCount(int arr[], int n,
int num1, int num2)
{
// Find num1
int i = 0;
for (i = 0; i < n; i++)
if (arr[i] == num1)
break;
// If num1 is not present
// or present at end
if (i >= n - 1)
return 0;
// Find num2
int j;
for (j = n - 1; j >= i + 1; j--)
if (arr[j] == num2)
break;
// If num2 is not present
if (j == i)
return 0;
// return number of elements
// between the two elements.
return (j - i - 1);
}
// Driver program
public static void main (String[] args)
{
int arr[] = { 3, 5, 7, 6, 4, 9, 12, 4, 8 };
int n = arr.length;
int num1 = 5, num2 = 4;
System.out.println( getCount(arr, n, num1, num2));
}
}
// This code is contributed by vt_m
Python3
# Python Program to count number of elements between
# two given elements.
# Function to count number of elements
# occurs between the elements.
def getCount(arr, n, num1, num2):
# Find num1
for i in range(0,n):
if (arr[i] == num1):
break
#If num1 is not present or present at end
if (i >= n-1):
return 0
# Find num2
for j in range(n-1, i+1, -1):
if (arr[j] == num2):
break
# If num2 is not present
if (j == i):
return 0
# return number of elements between
# the two elements.
return (j - i - 1)
# Driver Code
arr= [ 3, 5, 7, 6, 4, 9, 12, 4, 8 ]
n=len(arr)
num1 = 5
num2 = 4
print(getCount(arr, n, num1, num2))
# This code is contributed by SHARIQ_JMI
C#
// C# Program to count number of elements
// between two given elements.
using System;
class GFG {
// Function to count number of elements
// occurs between the elements.
static int getCount(int []arr, int n,
int num1, int num2)
{
// Find num1
int i = 0;
for (i = 0; i < n; i++)
if (arr[i] == num1)
break;
// If num1 is not present
// or present at end
if (i >= n - 1)
return 0;
// Find num2
int j;
for (j = n - 1; j >= i + 1; j--)
if (arr[j] == num2)
break;
// If num2 is not present
if (j == i)
return 0;
// return number of elements
// between the two elements.
return (j - i - 1);
}
// Driver Code
public static void Main ()
{
int []arr = {3, 5, 7, 6, 4, 9, 12, 4, 8};
int n = arr.Length;
int num1 = 5, num2 = 4;
Console.WriteLine(getCount(arr, n, num1, num2));
}
}
//
PHP
<?php
// Program to count number
// of elements between
// two given elements.
// Function to count
// number of elements
// occurs between the
// elements.
function getCount($arr, $n,
$num1, $num2)
{
// Find num1
$i = 0;
for ($i = 0; $i < $n; $i++)
if ($arr[$i] == $num1)
break;
// If num1 is not present
// or present at end
if ($i >= $n - 1)
return 0;
// Find num2
$j;
for ($j = $n - 1; $j >= $i + 1; $j--)
if ($arr[$j] == $num2)
break;
// If num2 is not present
if ($j == $i)
return 0;
// return number of elements
// betweenthe two elements.
return ($j - $i - 1);
}
// Driver Code
$arr = array(3, 5, 7, 6, 4, 9, 12, 4, 8);
$n = sizeof($arr);
$num1 = 5; $num2 = 4;
echo(getCount($arr, $n, $num1, $num2));
// This code is contributed by Ajit.
?>
JavaScript
<script>
// Program to count number of elements between
// two given elements.
// Function to count number of elements
// occurs between the elements.
function getCount( arr, n, num1, num2)
{
// Find num1
let i = 0;
for (i = 0; i < n; i++)
if (arr[i] == num1)
break;
// If num1 is not present or present at end
if (i >= n-1)
return 0;
// Find num2
let j;
for (j = n-1; j >= i+1; j--)
if (arr[j] == num2)
break;
// If num2 is not present
if (j == i)
return 0;
// return number of elements between
// the two elements.
return (j - i - 1);
}
// Driver program
let arr = [ 3, 5, 7, 6, 4, 9, 12, 4, 8 ];
let n = arr.length;
let num1 = 5, num2 = 4;
document.write(getCount(arr, n, num1, num2));
</script>
Time Complexity: O(n)
Auxiliary Space: O(1)
How to handle multiple queries?
For handling multiple queries, we can use hashing and store leftmost and rightmost indexes for every element present in array. Once we have stored these, we can answer all queries in O(1) time.
This article is contributed by Dharmendra kumar.
Similar Reads
Basics & Prerequisites
Data Structures
Getting Started with Array Data StructureArray is a collection of items of the same variable type that are stored at contiguous memory locations. It is one of the most popular and simple data structures used in programming. Basic terminologies of ArrayArray Index: In an array, elements are identified by their indexes. Array index starts fr
14 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem