Check if reversing a sub array make the array sorted
Last Updated :
13 Sep, 2023
Given an array of n distinct integers. The task is to check whether reversing any one sub-array can make the array sorted or not. If the array is already sorted or can be made sorted by reversing any one subarray, print "Yes", else print "No".
Examples:
Input : arr [] = {1, 2, 5, 4, 3}
Output : Yes
By reversing the subarray {5, 4, 3}, the array will be sorted.
Input : arr [] = { 1, 2, 4, 5, 3 }
Output : No
Method 1: Brute force (O(n3))
Consider every subarray and check if reversing the subarray makes the whole array sorted. If yes, return True. If reversing any of the subarrays doesn't make the array sorted, then return False. Considering every subarray will take O(n2), and for each subarray, checking whether the whole array will get sorted after reversing the subarray in consideration will take O(n). Thus overall complexity would be O(n3).
Method 2: Sorting ( O(n*log(n) ))
The idea is to compare the given array with its sorted version. Make a copy of the given array and sort it. Now, find the first index and last index in the given array which does not match with the sorted array. If no such indices are found (given array was already sorted), return True. Else check if the elements between the found indices are in decreasing order, if Yes then return True else return False
Below is the implementation of the above approach:
C++
// C++ program to check whether reversing a
// sub array make the array sorted or not
#include<bits/stdc++.h>
using namespace std;
// Return true, if reversing the subarray will
// sort the array, else return false.
bool checkReverse(int arr[], int n)
{
// Copying the array.
int temp[n];
for (int i = 0; i < n; i++)
temp[i] = arr[i];
// Sort the copied array.
sort(temp, temp + n);
// Finding the first mismatch.
int front;
for (front = 0; front < n; front++)
if (temp[front] != arr[front])
break;
// Finding the last mismatch.
int back;
for (back = n - 1; back >= 0; back--)
if (temp[back] != arr[back])
break;
// If whole array is sorted
if (front >= back)
return true;
// Checking subarray is decreasing or not.
do
{
front++;
if (arr[front - 1] < arr[front])
return false;
} while (front != back);
return true;
}
// Driver Program
int main()
{
int arr[] = { 1, 2, 5, 4, 3 };
int n = sizeof(arr)/sizeof(arr[0]);
checkReverse(arr, n)? (cout << "Yes" << endl):
(cout << "No" << endl);
return 0;
}
Java
// Java program to check whether reversing a
// sub array make the array sorted or not
import java.util.Arrays;
class GFG {
// Return true, if reversing the subarray will
// sort the array, else return false.
static boolean checkReverse(int arr[], int n) {
// Copying the array.
int temp[] = new int[n];
for (int i = 0; i < n; i++) {
temp[i] = arr[i];
}
// Sort the copied array.
Arrays.sort(temp);
// Finding the first mismatch.
int front;
for (front = 0; front < n; front++) {
if (temp[front] != arr[front]) {
break;
}
}
// Finding the last mismatch.
int back;
for (back = n - 1; back >= 0; back--) {
if (temp[back] != arr[back]) {
break;
}
}
// If whole array is sorted
if (front >= back) {
return true;
}
// Checking subarray is decreasing or not.
do {
front++;
if (arr[front - 1] < arr[front]) {
return false;
}
} while (front != back);
return true;
}
// Driver Program
public static void main(String[] args) {
int arr[] = {1, 2, 5, 4, 3};
int n = arr.length;
if (checkReverse(arr, n)) {
System.out.print("Yes");
} else {
System.out.print("No");
}
}
}
//This code contributed by 29AjayKumar
Python3
# Python3 program to check whether
# reversing a sub array make the
# array sorted or not
# Return true, if reversing the
# subarray will sort the array,
# else return false.
def checkReverse(arr, n):
# Copying the array
temp = [0] * n
for i in range(n):
temp[i] = arr[i]
# Sort the copied array.
temp.sort()
# Finding the first mismatch.
for front in range(n):
if temp[front] != arr[front]:
break
# Finding the last mismatch.
for back in range(n - 1, -1, -1):
if temp[back] != arr[back]:
break
#If whole array is sorted
if front >= back:
return True
while front != back:
front += 1
if arr[front - 1] < arr[front]:
return False
return True
# Driver code
arr = [1, 2, 5, 4, 3]
n = len(arr)
if checkReverse(arr, n) == True:
print("Yes")
else:
print("No")
# This code is contributed
# by Shrikant13
C#
// C# program to check whether reversing a
// sub array make the array sorted or not
using System;
class GFG
{
// Return true, if reversing the
// subarray will sort the array,
// else return false.
static bool checkReverse(int []arr, int n)
{
// Copying the array.
int []temp = new int[n];
for (int i = 0; i < n; i++)
{
temp[i] = arr[i];
}
// Sort the copied array.
Array.Sort(temp);
// Finding the first mismatch.
int front;
for (front = 0; front < n; front++)
{
if (temp[front] != arr[front])
{
break;
}
}
// Finding the last mismatch.
int back;
for (back = n - 1; back >= 0; back--)
{
if (temp[back] != arr[back])
{
break;
}
}
// If whole array is sorted
if (front >= back)
{
return true;
}
// Checking subarray is decreasing
// or not.
do
{
front++;
if (arr[front - 1] < arr[front])
{
return false;
}
} while (front != back);
return true;
}
// Driver Program
public static void Main()
{
int []arr = {1, 2, 5, 4, 3};
int n = arr.Length;
if (checkReverse(arr, n))
{
Console.Write("Yes");
}
else
{
Console.Write("No");
}
}
}
// This code is contributed
// by PrinciRaj
PHP
<?php
// PHP program to check whether reversing a
// sub array make the array sorted or not
// Return true, if reversing the subarray
// will sort the array, else return false.
function checkReverse($arr, $n)
{
// Copying the array.
$temp[$n] = array();
for ($i = 0; $i < $n; $i++)
$temp[$i] = $arr[$i];
// Sort the copied array.
sort($temp, 0);
// Finding the first mismatch.
$front;
for ($front = 0; $front < $n; $front++)
if ($temp[$front] != $arr[$front])
break;
// Finding the last mismatch.
$back;
for ($back = $n - 1; $back >= 0; $back--)
if ($temp[$back] != $arr[$back])
break;
// If whole array is sorted
if ($front >= $back)
return true;
// Checking subarray is decreasing or not.
do
{
$front++;
if ($arr[$front - 1] < $arr[$front])
return false;
} while ($front != $back);
return true;
}
// Driver Code
$arr = array( 1, 2, 5, 4, 3 );
$n = sizeof($arr);
if(checkReverse($arr, $n))
echo "Yes" . "\n";
else
echo "No" . "\n";
// This code is contributed
// by Akanksha Rai
?>
JavaScript
<script>
// Javascript program to check whether reversing a
// sub array make the array sorted or not
// Return true, if reversing the subarray will
// sort the array, else return false.
function checkReverse(arr, n) {
// Copying the array.
let temp = [];
for (let i = 0; i < n; i++) {
temp[i] = arr[i];
}
// Sort the copied array.
temp.sort();
// Finding the first mismatch.
let front;
for (front = 0; front < n; front++) {
if (temp[front] != arr[front]) {
break;
}
}
// Finding the last mismatch.
let back;
for (back = n - 1; back >= 0; back--) {
if (temp[back] != arr[back]) {
break;
}
}
// If whole array is sorted
if (front >= back) {
return true;
}
// Checking subarray is decreasing or not.
do {
front++;
if (arr[front - 1] < arr[front]) {
return false;
}
} while (front != back);
return true;
}
// Driver Code
let arr = [1, 2, 5, 4, 3];
let n = arr.length;
if (checkReverse(arr, n)) {
document.write("Yes");
} else {
document.write("No");
}
</script>
Time Complexity: O(n*log(n) ).
Auxiliary Space: O(n).
Method 3: Linear time solution (O(n)):
The idea to solve this problem is based on the observation that if we perform one rotation of any subarray in the sorted array (increasing order), then we there will be exactly one subarray which will be in decreasing order. So, we have to find that rotated subarray and perform one rotation on it. Finally check if the array becomes sorted or not.
- Initialize two variables x and y with -1.
- Iterate over the array.
- Find the first number for which a[i] > a[i+1] and store it into x.
- Similarly, Store index i+1 as well into y, As this will keep track of the ending of the subarray which is needed to reverse.
- Check if x == -1 then array is already sorted so return true.
- Otherwise, reverse the array from index x to index y.
- Traverse the array to check for every element is sorted or not.
- If not sorted, return false.
- Finally, return true.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
bool sortArr(int a[], int n)
{
int x = -1;
int y = -1;
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
if (x == -1) {
x = i;
}
y = i + 1;
}
}
if (x != -1) {
reverse(a + x, a + y + 1);
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
return 0;
}
}
}
return true;
}
// Driver Program
int main()
{
int arr[] = { 1, 2, 5, 4, 3 };
int n = sizeof(arr) / sizeof(arr[0]);
sortArr(arr, n) ? (cout << "Yes" << endl)
: (cout << "No" << endl);
return 0;
}
//This code is contributed by Shaurya Dixit (B19EE077)
Java
public class GFG {
static void reverse(int[] a,int x,int y)
{
while(x<y)
{
int temp = a[x];
a[x] = a[y];
a[y] = temp;
x++;
y--;
}
}
static boolean sortArr(int[] a, int n)
{
int x = -1;
int y = -1;
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
if (x == -1) {
x = i;
}
y = i + 1;
}
}
if (x != -1) {
reverse(a,x,y);
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
}
}
}
return true;
}
// Driver Code
public static void main (String[] args)
{
int arr[] = { 1, 2, 5, 4, 3 };
int n = arr.length;
if(sortArr(arr, n))
{
System.out.println("Yes");
}
else
{
System.out.println("No");
}
}
}
// This code is contributed by aditya942003patil
Python3
def reverse(a, x, y):
while(x < y):
temp = a[x]
a[x] = a[y]
a[y] = temp
x += 1
y -= 1
def sortArr(a, n):
x, y = -1, -1
for i in range(n-1):
if(a[i] > a[i+1]):
if(x == -1):
x = i
y = i + 1
if(x != -1):
reverse(a, x, y)
for i in range(0, n-1):
if(a[i] > a[i+1]):
return False
return True
arr = [1, 2, 5, 4, 3]
n = len(arr)
if(sortArr(arr, n)):
print("Yes")
else:
print("No")
# This code is contributed by lokesh
C#
// C# code to implement the above approach
using System;
public class GFG {
static void reverse(int[] a, int x, int y)
{
while (x < y) {
int temp = a[x];
a[x] = a[y];
a[y] = temp;
x++;
y--;
}
}
static bool sortArr(int[] a, int n)
{
int x = -1;
int y = -1;
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
if (x == -1) {
x = i;
}
y = i + 1;
}
}
if (x != -1) {
reverse(a, x, y);
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
}
}
}
return true;
}
static public void Main()
{
// Code
int[] arr = { 1, 2, 5, 4, 3 };
int n = arr.Length;
if (sortArr(arr, n)) {
Console.WriteLine("Yes");
}
else {
Console.WriteLine("No");
}
}
}
// This code is contributed by lokeshmvs21.
JavaScript
function sortArr(arr, n) {
let x=-1;
let y=-1;
for (let i = 0; i < n-1; i++) {
if (arr[i] > arr[i + 1]) {
if (x == -1) {
x = i;
}
y = i + 1;
}
}
if (x != -1) {
while(x<y)
{
let temp=arr[x];
arr[x]=arr[y];
arr[y]=temp;
x++;
y--;
}
for (let i = 0; i < n - 1; i++) {
if (arr[i] > arr[i + 1]) {
return false;
return 0;
}
}
}
return true;
}
// Driver Code
let arr = [1, 2, 5, 4, 3];
let n = arr.length;
if (sortArr(arr, n)) {
console.log("Yes");
} else {
console.log("No");
}
// This code is contributed by garg28harsh.
Time Complexity: O(n)
Auxiliary Space: O(1)
Method 4: Another linear time solution (O(n)):
Observe, that the answer will be True when the array is already sorted or when the array consists of three parts. The first part is increasing subarray, then decreasing subarray, and then again increasing subarray. So, we need to check that array contains increasing elements then some decreasing elements, and then increasing elements if this is the case the answer will be True. In all other cases, the answer will be False.
Note: Simply finding the three parts does not guarantee the answer to be True eg consider
arr [] = {10,20,30,40,4,3,2,50,60,70}
The answer would be False in this case although we are able to find three parts. We will be handling the validity of the three parts in the code below.
Below is the implementation of this approach:
C++
// C++ program to check whether reversing a sub array
// make the array sorted or not
#include<bits/stdc++.h>
using namespace std;
// Return true, if reversing the subarray will sort t
// he array, else return false.
bool checkReverse(int arr[], int n)
{
if (n == 1)
return true;
// Find first increasing part
int i;
for (i=1; i < n && arr[i-1] < arr[i]; i++);
if (i == n)
return true;
// Find reversed part
int j = i;
while (j < n && arr[j] < arr[j-1])
{
if (i > 1 && arr[j] < arr[i-2])
return false;
j++;
}
if (j == n)
return true;
// Find last increasing part
int k = j;
// To handle cases like {1,2,3,4,20,9,16,17}
if (arr[k] < arr[i-1])
return false;
while (k > 1 && k < n)
{
if (arr[k] < arr[k-1])
return false;
k++;
}
return true;
}
// Driver Program
int main()
{
int arr[] = {1, 3, 4, 10, 9, 8};
int n = sizeof(arr)/sizeof(arr[0]);
checkReverse(arr, n)? cout << "Yes" : cout << "No";
return 0;
}
Java
// Java program to check whether reversing a sub array
// make the array sorted or not
class GFG {
// Return true, if reversing the subarray will sort t
// he array, else return false.
static boolean checkReverse(int arr[], int n) {
if (n == 1) {
return true;
}
// Find first increasing part
int i;
for (i = 1; arr[i - 1] < arr[i] && i < n; i++);
if (i == n) {
return true;
}
// Find reversed part
int j = i;
while (j < n && arr[j] < arr[j - 1]) {
if (i > 1 && arr[j] < arr[i - 2]) {
return false;
}
j++;
}
if (j == n) {
return true;
}
// Find last increasing part
int k = j;
// To handle cases like {1,2,3,4,20,9,16,17}
if (arr[k] < arr[i - 1]) {
return false;
}
while (k > 1 && k < n) {
if (arr[k] < arr[k - 1]) {
return false;
}
k++;
}
return true;
}
// Driver Program
public static void main(String[] args) {
int arr[] = {1, 3, 4, 10, 9, 8};
int n = arr.length;
if (checkReverse(arr, n)) {
System.out.print("Yes");
} else {
System.out.print("No");
}
}
}
// This code is contributed
// by Rajput-Ji
Python3
# Python3 program to check whether reversing
# a sub array make the array sorted or not
import math as mt
# Return True, if reversing the subarray
# will sort the array, else return False.
def checkReverse(arr, n):
if (n == 1):
return True
# Find first increasing part
i = 1
for i in range(1, n):
if arr[i - 1] < arr[i] :
if (i == n):
return True
else:
break
# Find reversed part
j = i
while (j < n and arr[j] < arr[j - 1]):
if (i > 1 and arr[j] < arr[i - 2]):
return False
j += 1
if (j == n):
return True
# Find last increasing part
k = j
# To handle cases like 1,2,3,4,20,9,16,17
if (arr[k] < arr[i - 1]):
return False
while (k > 1 and k < n):
if (arr[k] < arr[k - 1]):
return False
k += 1
return True
# Driver Code
arr = [ 1, 3, 4, 10, 9, 8]
n = len(arr)
if checkReverse(arr, n):
print("Yes")
else:
print("No")
# This code is contributed by
# Mohit kumar 29
C#
// C# program to check whether reversing a
// sub array make the array sorted or not
using System;
public class GFG{
// Return true, if reversing the subarray will sort t
// he array, else return false.
static bool checkReverse(int []arr, int n) {
if (n == 1) {
return true;
}
// Find first increasing part
int i;
for (i = 1; arr[i - 1] < arr[i] && i < n; i++);
if (i == n) {
return true;
}
// Find reversed part
int j = i;
while (j < n && arr[j] < arr[j - 1]) {
if (i > 1 && arr[j] < arr[i - 2]) {
return false;
}
j++;
}
if (j == n) {
return true;
}
// Find last increasing part
int k = j;
// To handle cases like {1,2,3,4,20,9,16,17}
if (arr[k] < arr[i - 1]) {
return false;
}
while (k > 1 && k < n) {
if (arr[k] < arr[k - 1]) {
return false;
}
k++;
}
return true;
}
// Driver Program
public static void Main() {
int []arr = {1, 3, 4, 10, 9, 8};
int n = arr.Length;
if (checkReverse(arr, n)) {
Console.Write("Yes");
} else {
Console.Write("No");
}
}
}
// This code is contributed
// by 29AjayKumar
JavaScript
<script>
// Javascript program to check whether reversing a sub array
// make the array sorted or not
// Return true, if reversing the subarray will sort t
// he array, else return false.
function checkReverse( arr, n)
{
if (n == 1)
return true;
// Find first increasing part
let i;
for (i=1; i < n && arr[i-1] < arr[i]; i++);
if (i == n)
return true;
// Find reversed part
let j = i;
while (j < n && arr[j] < arr[j-1])
{
if (i > 1 && arr[j] < arr[i-2])
return false;
j++;
}
if (j == n)
return true;
// Find last increasing part
let k = j;
// To handle cases like {1,2,3,4,20,9,16,17}
if (arr[k] < arr[i-1])
return false;
while (k > 1 && k < n)
{
if (arr[k] < arr[k-1])
return false;
k++;
}
return true;
}
// Driver program
let arr = [1, 3, 4, 10, 9, 8];
let n = arr.length;
if (checkReverse(arr, n)) {
document.write("Yes");
} else {
document.write("No");
}
</script>
Time Complexity: O(n).
Auxiliary Space: O(1).
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem