Elements of an array that are not divisible by any element of another array
Last Updated :
13 Jul, 2022
Given two arrays A[] and B[], write an efficient code to determine if every element of B[] is divisible by at least 1 element of A[]. Display those elements of B[], which are not divisible by any of the elements in A[].
Examples :
Input : A[] = {100, 200, 400, 100, 600}
B[] = {45, 90, 48, 1000, 3000}
Output : 45, 90, 48
The output elements are those that are
not divisible by any element of A[].
Method I (Naive Implementation):
- Iterate through every single element of B[].
- Check if it is divisible by at least 1 element of A[] or not. If not divisible by any, then print it.
Implementation:
C++
// C++ code for naive implementation
#include<iostream>
using namespace std;
// Function for checking the condition
// with 2 loops
void printNonDivisible(int A[], int B[],
int n, int m)
{
for (int i = 0; i < m; i++)
{
int j = 0;
for (j = 0; j < n; j++)
if( B[i] % A[j] == 0 )
break;
// If none of the elements in A[]
// divided B[i]
if (j == n)
cout << B[i] << endl;
}
}
// Driver code
int main()
{
int A[] = {100, 200, 400, 100};
int n = sizeof(A)/sizeof(A[0]);
int B[] = {190, 200, 87, 600, 800};
int m = sizeof(B)/sizeof(B[0]);
printNonDivisible(A, B, n, m);
return 0;
}
Java
// Java code for naive implementation
import java.io.*;
public class GFG {
// Function for checking the condition
// with 2 loops
static void printNonDivisible(int []A, int []B,
int n, int m)
{
for (int i = 0; i < m; i++)
{
int j = 0;
for (j = 0; j < n; j++)
if( B[i] % A[j] == 0 )
break;
// If none of the elements
// in A[] divided B[i]
if (j == n)
System.out.println(B[i]);
}
}
// Driver code
static public void main (String[] args)
{
int []A = {100, 200, 400, 100};
int n = A.length;
int []B = {190, 200, 87, 600, 800};
int m = B.length;
printNonDivisible(A, B, n, m);
}
}
// This code is contributed by vt_m .
Python3
# Python3 code for naive implementation
import math as mt
# Function for checking the condition
# with 2 loops
def printNonDivisible(A, B, n, m):
for i in range(m):
j = 0
for j in range(n):
if(B[i] % A[j] == 0):
break
# If none of the elements in A[]
# divided B[i]
if (j == n - 1):
print(B[i])
# Driver code
A = [100, 200, 400, 100]
n = len(A)
B = [190, 200, 87, 600, 800]
m = len(B)
printNonDivisible(A, B, n, m)
# This code is contributed by#
# mohit kumar 29
C#
// C# code for naive implementation
using System;
public class GFG {
// Function for checking the
// condition with 2 loops
static void printNonDivisible(int []A, int []B,
int n, int m)
{
for (int i = 0; i < m; i++)
{
int j = 0;
for (j = 0; j < n; j++)
if( B[i] % A[j] == 0 )
break;
// If none of the elements
// in A[] divided B[i]
if (j == n)
Console.WriteLine(B[i]);
}
}
// Driver code
static public void Main ()
{
int []A = {100, 200, 400, 100};
int n = A.Length;
int []B = {190, 200, 87, 600, 800};
int m = B.Length;
printNonDivisible(A, B, n, m);
}
}
// This code is contributed by vt_m .
PHP
<?php
// PHP code for naive implementation
// Function for checking
// the condition with 2 loops
function printNonDivisible($A, $B,
$n, $m)
{
for ($i = 0; $i < $m; $i++)
{
$j = 0;
for ($j = 0; $j < $n; $j++)
if( $B[$i] % $A[$j] == 0 )
break;
// If none of the elements
// in A[] divided B[i]
if ($j == $n)
echo $B[$i], "\n";
}
}
// Driver code
$A= array (100, 200, 400, 100);
$n = sizeof($A);
$B = array (190, 200, 87, 600, 800);
$m = sizeof($B);
printNonDivisible($A, $B, $n, $m);
// This code is contributed by ajit
?>
JavaScript
<script>
// Javascript code for naive implementation
// Function for checking the
// condition with 2 loops
function printNonDivisible(A, B, n, m)
{
for (let i = 0; i < m; i++)
{
let j = 0;
for (j = 0; j < n; j++)
if( B[i] % A[j] == 0 )
break;
// If none of the elements
// in A[] divided B[i]
if (j == n)
document.write(B[i] + "</br>");
}
}
let A = [100, 200, 400, 100];
let n = A.length;
let B = [190, 200, 87, 600, 800];
let m = B.length;
printNonDivisible(A, B, n, m);
</script>
Time Complexity :- O(n*m)
Auxiliary Space :- O(1)
Method 2 (Efficient when elements in are small)
- Maintain an array mark[] to mark the multiples of the numbers in A[].
- Mark all the multiples of all the elements in A[], till a max of B[].
- Check if mark[B[i]] value for every element n in B[] is not 0 and print if not marked.
Implementation:
C++
// CPP code for improved implementation
#include<bits/stdc++.h>
using namespace std;
// Function for printing all elements of B[]
// that are not divisible by any element of A[]
void printNonDivisible(int A[], int B[], int n,
int m)
{
// Find maximum element in B[]
int maxB = 0;
for (int i = 0; i < m; i++)
if (B[i] > maxB)
maxB = B[i];
// Initialize all multiples as marked
int mark[maxB];
memset(mark, 0, sizeof(mark));
// Marking the multiples of all the
// elements of the array.
for (int i = 0; i < n; i++)
for (int x = A[i]; x <= maxB; x += A[i])
mark[x]++;
// Print not marked elements
for (int i = 0; i < m; i++)
if (! mark[B[i]])
cout << B[i] << endl;
}
// Driver function
int main()
{
int A[] = {100, 200, 400, 100};
int n = sizeof(A)/sizeof(A[0]);
int B[] = {190, 200, 87, 600, 800};
int m = sizeof(B)/sizeof(B[0]);
printNonDivisible(A, B, n, m);
return 0;
}
Java
// Java code for improved implementation
import java.io.*;
class GFG
{
// Function for printing all elements of B[]
// that are not divisible by any element of A[]
static void printNonDivisible(int []A, int []B,
int n,int m)
{
// Find maximum element in B[]
int maxB = 0;
for (int i = 0; i < m; i++)
if (B[i] > maxB)
maxB = B[i];
// Initialize all multiples as marked
int [] mark = new int[maxB + 1];
for(int i = 0; i < maxB; i++)
mark[i]=0;
// Marking the multiples of all the
// elements of the array.
for (int i = 0; i < n; i++)
for (int x = A[i]; x <= maxB; x += A[i])
mark[x]++;
// Print not marked elements
for (int i = 0; i < m; i++)
if (mark[B[i]] == 0)
System.out.println(B[i]);
}
// Driver code
static public void main(String[] args)
{
int []A= {100, 200, 400, 100};
int n = A.length;
int []B= {190, 200, 87, 600, 800};
int m = B.length;
printNonDivisible(A, B, n, m);
}
}
// This code is contributed by Mohit Kumar.
Python3
# Python 3 code for improved implementation
# Function for printing all elements of B[]
# that are not divisible by any element of A[]
def printNonDivisible(A, B, n, m):
# Find maximum element in B[]
maxB = 0
for i in range(0, m, 1):
if (B[i] > maxB):
maxB = B[i]
# Initialize all multiples as marked
mark = [0 for i in range(maxB)]
# Marking the multiples of all
# the elements of the array.
for i in range(0, n, 1):
for x in range(A[i], maxB, A[i]):
mark[x] += 1
# Print not marked elements
for i in range(0, m - 1, 1):
if (mark[B[i]] == 0):
print(B[i])
# Driver Code
if __name__ == '__main__':
A = [100, 200, 400, 100]
n = len(A)
B = [190, 200, 87, 600, 800]
m = len(B)
printNonDivisible(A, B, n, m)
# This code is contributed by
# Shashank_Sharma
C#
// C# code for improved implementation
using System;
class GFG
{
// Function for printing all elements of []B
// that are not divisible by any element of []A
static void printNonDivisible(int []A, int []B,
int n, int m)
{
// Find maximum element in []B
int maxB = 0;
for (int i = 0; i < m; i++)
if (B[i] > maxB)
maxB = B[i];
// Initialize all multiples as marked
int [] mark = new int[maxB + 1];
for(int i = 0; i < maxB; i++)
mark[i] = 0;
// Marking the multiples of all the
// elements of the array.
for (int i = 0; i < n; i++)
for (int x = A[i]; x <= maxB; x += A[i])
mark[x]++;
// Print not marked elements
for (int i = 0; i < m; i++)
if (mark[B[i]] == 0)
Console.WriteLine(B[i]);
}
// Driver code
static public void Main(String[] args)
{
int []A= {100, 200, 400, 100};
int n = A.Length;
int []B= {190, 200, 87, 600, 800};
int m = B.Length;
printNonDivisible(A, B, n, m);
}
}
// This code is contributed by Rajput-Ji
PHP
<?php
// PHP code for improved implementation
// Function for printing all elements of B[]
// that are not divisible by any element of A[]
function printNonDivisible($A, $B, $n, $m)
{
// Find maximum element in B[]
$maxB = 0;
for ($i = 0; $i < $m; $i++)
{
if ($B[$i] > $maxB)
$maxB = $B[$i];
}
// Initialize all multiples as marked
$mark = array();
for ($i = 0; $i < $maxB; $i++)
{
$mark[] = "0";
}
// Marking the multiples of all
// the elements of the array.
for ($i = 0; $i < $n; $i++)
{
for ($x = $A[$i]; $x < $maxB;
$x += $A[$i])
{
$mark[$x] += 1;
}
}
// Print not marked elements
for ($i = 0; $i < $m - 1; $i++)
{
if ($mark[$B[$i]] == 0)
echo "$B[$i]\n";
}
}
// Driver Code
$A = array(100, 200, 400, 100);
$n = count($A);
$B = array(190, 200, 87, 600, 800);
$m = count($B);
printNonDivisible($A, $B, $n, $m);
// This code is contributed by
// Srathore
?>
JavaScript
<script>
// Javascript code for improved implementation
// Function for printing all elements of []B
// that are not divisible by any element of []A
function printNonDivisible(A, B, n, m)
{
// Find maximum element in []B
let maxB = 0;
for (let i = 0; i < m; i++)
if (B[i] > maxB)
maxB = B[i];
// Initialize all multiples as marked
let mark = new Array(maxB + 1);
for(let i = 0; i < maxB; i++)
mark[i] = 0;
// Marking the multiples of all the
// elements of the array.
for (let i = 0; i < n; i++)
for (let x = A[i]; x <= maxB; x += A[i])
mark[x]++;
// Print not marked elements
for (let i = 0; i < m; i++)
if (mark[B[i]] == 0)
document.write(B[i] + "</br>");
}
let A= [100, 200, 400, 100];
let n = A.length;
let B= [190, 200, 87, 600, 800];
let m = B.length;
printNonDivisible(A, B, n, m);
</script>
Time Complexity :- O(m + n*(max(B[]/min(A[])))
Auxiliary Space :- O(n) + O(m) + O(max(B[]))
Similar Reads
Count elements that are divisible by at-least one element in another array Given two arrays arr1[] and arr2[]. The task is to find the count of such elements in the first array whose at-least one factor is present in the second array.Examples: Input : arr1[] = {10, 2, 13, 4, 15} ; arr2[] = {2, 4, 5, 6} Output : 4 There is no factor of 13 which is present in the second arra
8 min read
Count elements that are divisible by at-least one element in another array Given two arrays arr1[] and arr2[]. The task is to find the count of such elements in the first array whose at-least one factor is present in the second array.Examples: Input : arr1[] = {10, 2, 13, 4, 15} ; arr2[] = {2, 4, 5, 6} Output : 4 There is no factor of 13 which is present in the second arra
8 min read
Count elements that are divisible by at-least one element in another array Given two arrays arr1[] and arr2[]. The task is to find the count of such elements in the first array whose at-least one factor is present in the second array.Examples: Input : arr1[] = {10, 2, 13, 4, 15} ; arr2[] = {2, 4, 5, 6} Output : 4 There is no factor of 13 which is present in the second arra
8 min read
Count of elements not divisible by any other elements of Array Given an array arr[], the task is to determine the number of elements of the array which are not divisible by any other element in the given array. Examples: Input: arr[] = {86, 45, 18, 4, 8, 28, 19, 33, 2} Output: 4 Explanation: The elements are {2, 19, 33, 45} are not divisible by any other array
13 min read
Find an array element such that all elements are divisible by it Given an array of numbers, find the number among them such that all numbers are divisible by it. If not possible print -1. Examples: Input : arr = {25, 20, 5, 10, 100} Output : 5 Explanation : 5 is an array element which divides all numbers. Input : arr = {9, 3, 6, 2, 15} Output : -1 Explanation : N
8 min read
Find array elements that are divisible by at least one other element Given an array arr[] of positive integers, count all special numbers in the array. A number is considered a special number if it is divisible by at least one other number in the same array.Examples : Input : arr[] = [1, 2, 3] Output : 2Explanation : 2 and 3 are divisible by 1.Input : arr[] = [2, 3,
9 min read