Open In App

Binary Search Algorithm - Iterative and Recursive Implementation

Last Updated : 31 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Binary Search is an searching algorithm that operates on a sorted or monotonic search space, repeatedly dividing it into halves to find a target value or optimal answer in logarithmic time O(log N).

binnary-search-
Binary Search Algorithm

Conditions to apply Binary Search Algorithm in a Data Structure

To apply Binary Search algorithm:

  • The data structure must be sorted.
  • Access to any element of the data structure should take constant time.

Binary Search Algorithm

Below is the step-by-step algorithm for Binary Search:

  • Divide the search space into two halves by finding the middle index "mid"
  • Compare the middle element of the search space with the key
  • If the key is found at middle element, the process is terminated.
  • If the key is not found at middle element, choose which half will be used as the next search space.
    -> If the key is smaller than the middle element, then the left side is used for next search.
    -> If the key is larger than the middle element, then the right side is used for next search.
  • This process is continued until the key is found or the total search space is exhausted.

How does Binary Search Algorithm work?

To understand the working of binary search, consider the following illustration:

Consider an array arr[] = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91}, and the target = 23.

How to Implement Binary Search Algorithm?

The Binary Search Algorithm can be implemented in the following two ways

  • Iterative Binary Search Algorithm
  • Recursive Binary Search Algorithm

Iterative Binary Search Algorithm: O(log n) Time and O(1) Space

Here we use a while loop to continue the process of comparing the key and splitting the search space in two halves.

C++
#include <iostream>
#include <vector>
using namespace std;

int binarySearch(vector<int> &arr, int x) {
    int low = 0;
    int high = arr.size() - 1;
    while (low <= high) {
        int mid = low + (high - low) / 2;

        // Check if x is present at mid
        if (arr[mid] == x)
            return mid;

        // If x greater, ignore left half
        if (arr[mid] < x)
            low = mid + 1;

        // If x is smaller, ignore right half
        else
            high = mid - 1;
    }

    // If we reach here, then element was not present
    return -1;
}

int main() {
    vector<int> arr = { 2, 3, 4, 10, 40 };
    int x = 10;
    int result = binarySearch(arr, x);
    if(result == -1) cout << "Element is not present in array";
    else cout << "Element is present at index " << result;
    return 0;
}
C
#include <stdio.h>

int binarySearch(int arr[], int n, int x) {
    int low = 0;
    int high = n-1;
    while (low <= high) {
        int mid = low + (high - low) / 2;

        // Check if x is present at mid
        if (arr[mid] == x)
            return mid;

        // If x greater, ignore left half
        if (arr[mid] < x)
            low = mid + 1;

        // If x is smaller, ignore right half
        else
            high = mid - 1;
    }

    // If we reach here, then element was not present
    return -1;
}

int main() {
    int arr[] = { 2, 3, 4, 10, 40 };
    int x = 10;
    int n = sizeof(arr) / sizeof(arr[0]);
    int result = binarySearch(arr, n, x);
    if(result == -1) printf("Element is not present in array");
    else printf("Element is present at index %d",result);

}
Java
class GFG {
  
    static int binarySearch(int arr[], int x) {
        int low = 0, high = arr.length - 1;
        while (low <= high) {
            int mid = low + (high - low) / 2;

            // Check if x is present at mid
            if (arr[mid] == x)
                return mid;

            // If x greater, ignore left half
            if (arr[mid] < x)
                low = mid + 1;

            // If x is smaller, ignore right half
            else
                high = mid - 1;
        }

        // If we reach here, then element was
        // not present
        return -1;
    }

    public static void main(String args[]) {
        int arr[] = { 2, 3, 4, 10, 40 };
        int x = 10;
        int result = binarySearch(arr, x);
        if (result == -1)
            System.out.println(
                "Element is not present in array");
        else
            System.out.println("Element is present at "
                               + "index " + result);
    }
}
Python
def binarySearch(arr, x):
    low = 0
    high = len(arr) - 1
    while low <= high:

        mid = low + (high - low) // 2

        # Check if x is present at mid
        if arr[mid] == x:
            return mid

        # If x is greater, ignore left half
        elif arr[mid] < x:
            low = mid + 1

        # If x is smaller, ignore right half
        else:
            high = mid - 1

    # If we reach here, then the element
    # was not present
    return -1

if __name__ == '__main__':
    arr = [2, 3, 4, 10, 40]
    x = 10

    result = binarySearch(arr, x)
    if result != -1:
        print("Element is present at index", result)
    else:
        print("Element is not present in array")
C#
using System;

class GFG {
    
    static int binarySearch(int[] arr, int x) {
        int low = 0, high = arr.Length - 1;
        while (low <= high) {
            int mid = low + (high - low) / 2;

            // Check if x is present at mid
            if (arr[mid] == x)
                return mid;

            // If x greater, ignore left half
            if (arr[mid] < x)
                low = mid + 1;

            // If x is smaller, ignore right half
            else
                high = mid - 1;
        }

        // If we reach here, then element was
        // not present
        return -1;
    }

    public static void Main() {
        int[] arr = { 2, 3, 4, 10, 40 };
        int n = arr.Length;
        int x = 10;
        int result = binarySearch(arr, x);
        if (result == -1)
            Console.WriteLine(
                "Element is not present in array");
        else
            Console.WriteLine("Element is present at "
                              + "index " + result);
    }
}
JavaScript
function binarySearch(arr, x) {
    let low = 0;
    let high = arr.length - 1;
    let mid;
    while (high >= low) {
        mid = low + Math.floor((high - low) / 2);

        // If the element is present at the middle
        // itself
        if (arr[mid] == x)
            return mid;

        // If element is smaller than mid, then
        // it can only be present in left subarray
        if (arr[mid] > x)
            high = mid - 1;

        // Else the element can only be present
        // in right subarray
        else
            low = mid + 1;
    }

    // We reach here when element is not
    // present in array
    return -1;
}

// Driver Code
arr = new Array(2, 3, 4, 10, 40);
x = 10;
result = binarySearch(arr, x);
if (result == -1)
    console.log("Element is not present in array")
    else
    console.log("Element is present at index "
                    + result);
PHP
<?php
function binarySearch($arr, $x) {
    $low = 0;
    $high = sizeof($arr) - 1;
    while ($low <= $high) {
        $mid = $low + ($high - $low) / 2;

        // Check if x is present at mid
        if ($arr[$mid] == $x)
            return floor($mid);

        // If x greater, ignore
        // left half
        if ($arr[$mid] < $x)
            $low = $mid + 1;

        // If x is smaller, 
        // ignore right half
        else
            $high = $mid - 1;
    }

    // If we reach here, then 
    // element was not present
    return -1;
}

// Driver Code
$arr = array(2, 3, 4, 10, 40);
$x = 10;
$result = binarySearch($arr, $x);
if(($result == -1))
echo "Element is not present in array";
else
echo "Element is present at index ", 
                            $result;
?>

Output
Element is present at index 3

Recursive Binary Search Algorithm:

Create a recursive function and compare the mid of the search space with the key. And based on the result either return the index where the key is found or call the recursive function for the next search space.

C++
#include <iostream>
#include <vector>
using namespace std;

// A recursive binary search function. It returns
// location of x in given array arr[low..high] is present,
// otherwise -1
int binarySearch(vector<int> &arr, int low, int high, int x) {
    if (high >= low) {
        int mid = low + (high - low) / 2;

        // If the element is present at the middle
        // itself
        if (arr[mid] == x)
            return mid;

        // If element is smaller than mid, then
        // it can only be present in left subarray
        if (arr[mid] > x)
            return binarySearch(arr, low, mid - 1, x);

        // Else the element can only be present
        // in right subarray
        return binarySearch(arr, mid + 1, high, x);
    }
  return -1;
}

int main() {
    vector<int> arr = { 2, 3, 4, 10, 40 };
    int query = 10;
    int n = arr.size();
    int result = binarySearch(arr, 0, n - 1, query);
    if (result == -1) cout << "Element is not present in array";
    else cout << "Element is present at index " << result;
    return 0;
}
C
#include <stdio.h>

// A recursive binary search function. It returns
// location of x in given array arr[low..high] is present,
// otherwise -1
int binarySearch(int arr[], int low, int high, int x) {
    if (high >= low) {
        int mid = low + (high - low) / 2;

        // If the element is present at the middle
        // itself
        if (arr[mid] == x)
            return mid;

        // If element is smaller than mid, then
        // it can only be present in left subarray
        if (arr[mid] > x)
            return binarySearch(arr, low, mid - 1, x);

        // Else the element can only be present
        // in right subarray
        return binarySearch(arr, mid + 1, high, x);
    }

    // We reach here when element is not
    // present in array
    return -1;
}

int main()
{
    int arr[] = { 2, 3, 4, 10, 40 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int x = 10;
    int result = binarySearch(arr, 0, n - 1, x);
    if (result == -1) printf("Element is not present in array");
    else printf("Element is present at index %d", result);
    return 0;
}
Java
class GFG {
    
    // A recursive binary search function. It returns
    // location of x in given array arr[low..high] is present,
    // otherwise -1    
    static int binarySearch(int arr[], int low, int high, int x) {
        if (high >= low) {
            int mid = low + (high - low) / 2;

            // If the element is present at the
            // middle itself
            if (arr[mid] == x)
                return mid;

            // If element is smaller than mid, then
            // it can only be present in left subarray
            if (arr[mid] > x)
                return binarySearch(arr, low, mid - 1, x);

            // Else the element can only be present
            // in right subarray
            return binarySearch(arr, mid + 1, high, x);
        }

        // We reach here when element is not present
        // in array
        return -1;
    }

    public static void main(String args[])
    {
        int arr[] = { 2, 3, 4, 10, 40 };
        int n = arr.length;
        int x = 10;
        int result = binarySearch(arr, 0, n - 1, x);
        if (result == -1)
            System.out.println(
                "Element is not present in array");
        else
            System.out.println(
                "Element is present at index " + result);
    }
}
Python
# A recursive binary search function. It returns
# location of x in given array arr[low..high] is present,
# otherwise -1
def binarySearch(arr, low, high, x):

    # Check base case
    if high >= low:

        mid = low + (high - low) // 2

        # If element is present at the middle itself
        if arr[mid] == x:
            return mid

        # If element is smaller than mid, then it
        # can only be present in left subarray
        elif arr[mid] > x:
            return binarySearch(arr, low, mid-1, x)

        # Else the element can only be present
        # in right subarray
        else:
            return binarySearch(arr, mid + 1, high, x)

    # Element is not present in the array
    else:
        return -1

if __name__ == '__main__':
    arr = [2, 3, 4, 10, 40]
    x = 10
    
    result = binarySearch(arr, 0, len(arr)-1, x)
    
    if result != -1:
        print("Element is present at index", result)
    else:
        print("Element is not present in array")
C#
using System;

class GFG {

    // Returns index of x if it is present in
    // arr[low..high], else return -1
    static int binarySearch(int[] arr, int low, int high, int x) {
        if (high >= low) {
            int mid = low + (high - low) / 2;

            // If the element is present at the
            // middle itself
            if (arr[mid] == x)
                return mid;

            // If element is smaller than mid, then
            // it can only be present in left subarray
            if (arr[mid] > x)
                return binarySearch(arr, low, mid - 1, x);

            // Else the element can only be present
            // in right subarray
            return binarySearch(arr, mid + 1, high, x);
        }

        // We reach here when element is not present
        // in array
        return -1;
    }

    public static void Main() {

        int[] arr = { 2, 3, 4, 10, 40 };
        int n = arr.Length;
        int x = 10;

        int result = binarySearch(arr, 0, n - 1, x);

        if (result == -1)
            Console.WriteLine(
                "Element is not present in arrau");
        else
            Console.WriteLine("Element is present at index "
                              + result);
    }
}
JavaScript
// A recursive binary search function. It returns
// location of x in given array arr[low..high] is present,
// otherwise -1
function binarySearch(arr, low, high, x) {
    if (high >= low) {
        let mid = low + Math.floor((high - low) / 2);

        // If the element is present at the middle
        // itself
        if (arr[mid] == x)
            return mid;

        // If element is smaller than mid, then
        // it can only be present in left subarray
        if (arr[mid] > x)
            return binarySearch(arr, low, mid - 1, x);

        // Else the element can only be present
        // in right subarray
        return binarySearch(arr, mid + 1, high, x);
    }

    // We reach here when element is not
    // present in array
    return -1;
}

// Driver Code
let arr = [ 2, 3, 4, 10, 40 ];
let x = 10;
let n = arr.length
let result = binarySearch(arr, 0, n - 1, x);
if (result == -1)
    console.log("Element is not present in array");
else
    console.log("Element is present at index " + result);
PHP
<?php

// A recursive binary search function. It returns
// location of x in given array arr[low..high] is present,
// otherwise -1
function binarySearch($arr, $low, $high, $x) {
    if ($high >= $low)  {
        $mid = ceil($low + ($high - $low) / 2);

        // If the element is present 
        // at the middle itself
        if ($arr[$mid] == $x) 
            return floor($mid);

        // If element is smaller than 
        // mid, then it can only be 
        // present in left subarray
        if ($arr[$mid] > $x) 
            return binarySearch($arr, $low, 
                                $mid - 1, $x);

        // Else the element can only 
        // be present in right subarray
        return binarySearch($arr, $mid + 1, 
                            $high, $x);
    }

    // We reach here when element 
    // is not present in array
    return -1;
}

$arr = array(2, 3, 4, 10, 40);
$n = count($arr);
$x = 10;
$result = binarySearch($arr, 0, $n - 1, $x);
if(($result == -1))
echo "Element is not present in array";
else
echo "Element is present at index ",
                            $result;
?>

Output
Element is present at index 3

Complexity Analysis of Binary Search Algorithm

  • Time Complexity: 
    -> Best Case: O(1)
    -> Average Case: O(log N)
    -> Worst Case: O(log N)
  • Auxiliary Space: O(1), If the recursive call stack is considered then the auxiliary space will be O(log N).

Please refer Time and Space Complexity Analysis of Binary Search for more details.

Binary Search Visualizer

Applications of Binary Search Algorithm

  • Binary search can be used as a building block for more complex algorithms used in machine learning, such as algorithms for training neural networks or finding the optimal hyperparameters for a model.
  • It can be used for searching in computer graphics such as algorithms for ray tracing or texture mapping.
  • It can be used for searching a database.

Iterative Binary Search Tree

Similar Reads