Analysis of Algorithms | Θ (Theta) Notation
Last Updated :
23 Jul, 2025
In the analysis of algorithms, asymptotic notations are used to evaluate the performance of an algorithm by providing an exact order of growth. This article will discuss Big - Theta notations represented by a Greek letter (Θ).
Definition: Let g and f be the function from the set of natural numbers to itself. The function f is said to be Θ(g), if there are constants c1, c2 > 0 and a natural number n0 such that c1* g(n) ≤ f(n) ≤ c2 * g(n) for all n ≥ n0
Mathematical Representation:
Θ (g(n)) = {f(n): there exist positive constants c1, c2 and n0 such that 0 ≤ c1 * g(n) ≤ f(n) ≤ c2 * g(n) for all n ≥ n0}
Note: Θ(g) is a set
The above definition means, if f(n) is theta of g(n), then the value f(n) is always between c1 * g(n) and c2 * g(n) for large values of n (n ≥ n0). The definition of theta also requires that f(n) must be non-negative for values of n greater than n0.
Graphical Representation:
Graphical RepresentationIn simple language, Big - Theta(Θ) notation specifies asymptotic bounds (both upper and lower) for a function f(n) and provides the average time complexity of an algorithm.
Follow the steps below to find the average time complexity of any program:
- Break the program into smaller segments.
- Find all types and number of inputs and calculate the number of operations they take to be executed. Make sure that the input cases are equally distributed.
- Find the sum of all the calculated values and divide the sum by the total number of inputs let say the function of n obtained is g(n) after removing all the constants, then in Θ notation its represented as Θ(g(n))
Example: Consider an example to find whether a key exists in an array or not using linear search. The idea is to traverse the array and check every element if it is equal to the key or not.
The pseudo-code is as follows:
bool linearSearch(int a[], int n, int key)
{
for (int i = 0; i < n; i++) {
if (a[i] == key)
return true;
}
return false;
}
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find whether a key exists in an
// array or not using linear search
bool linearSearch(int a[], int n, int key)
{
// Traverse the given array, a[]
for (int i = 0; i < n; i++) {
// Check if a[i] is equal to key
if (a[i] == key)
return true;
}
return false;
}
// Driver Code
int main()
{
// Given Input
int arr[] = { 2, 3, 4, 10, 40 };
int x = 10;
int n = sizeof(arr) / sizeof(arr[0]);
// Function Call
if (linearSearch(arr, n, x))
cout << "Element is present in array";
else
cout << "Element is not present in array";
return 0;
}
Java
// Java program for the above approach
import java.lang.*;
import java.util.*;
class GFG{
// Function to find whether a key exists in an
// array or not using linear search
static boolean linearSearch(int a[], int n,
int key)
{
// Traverse the given array, a[]
for(int i = 0; i < n; i++)
{
// Check if a[i] is equal to key
if (a[i] == key)
return true;
}
return false;
}
// Driver code
public static void main(String[] args)
{
// Given Input
int arr[] = { 2, 3, 4, 10, 40 };
int x = 10;
int n = arr.length;
// Function Call
if (linearSearch(arr, n, x))
System.out.println("Element is present in array");
else
System.out.println("Element is not present in array");
}
}
// This code is contributed by avijitmondal1998
Python
# Python3 program for the above approach
# Function to find whether a key exists in an
# array or not using linear search
def linearSearch(a, n, key):
# Traverse the given array, a[]
for i in range(0, n):
# Check if a[i] is equal to key
if (a[i] == key):
return True
return False
# Driver Code
# Given Input
arr = 2, 3, 4, 10, 40
x = 10
n = len(arr)
# Function Call
if (linearSearch(arr, n, x)):
print("Element is present in array")
else:
print("Element is not present in array")
# This code is contributed by shivanisinghss2110
C#
// C# program for above approach
using System;
class GFG{
// Function to find whether a key exists in an
// array or not using linear search
static bool linearSearch(int[] a, int n,
int key)
{
// Traverse the given array, a[]
for(int i = 0; i < n; i++)
{
// Check if a[i] is equal to key
if (a[i] == key)
return true;
}
return false;
}
// Driver Code
static void Main()
{
// Given Input
int[] arr = { 2, 3, 4, 10, 40 };
int x = 10;
int n = arr.Length;
// Function Call
if (linearSearch(arr, n, x))
Console.Write("Element is present in array");
else
Console.Write("Element is not present in array");
}
}
// This code is contributed by sanjoy_62.
JavaScript
<script>
// JavaScript program for the above approach
// Function to find whether a key exists in an
// array or not using linear search
function linearSearch(a, n, key)
{
// Traverse the given array, a[]
for(var i = 0; i < n; i++)
{
// Check if a[i] is equal to key
if (a[i] == key)
return true;
}
return false;
}
// Driver code
// Given Input
var arr = [ 2, 3, 4, 10, 40 ];
var x = 10;
var n = arr.length;
// Function Call
if (linearSearch(arr, n, x))
document.write("Element is present in array");
else
document.write("Element is not present in array");
// This code is contributed by shivanisinghss2110
</script>
OutputElement is present in array
Time Complexity: O(n)
Auxiliary Space: O(1)
In a linear search problem, let's assume that all the cases are uniformly distributed (including the case when the key is absent in the array). So, sum all the cases (when the key is present at position 1, 2, 3, ......, n and not present, and divide the sum by n + 1.
Average case time complexity = \frac{\sum_{i=1}^{n+1}\theta(i)}{n + 1}
⇒ \frac{\theta((n+1)*(n+2)/2)}{n+1}
⇒ \theta(1 + n/2)
⇒ \theta(n)
(constants are removed)
When to use Big - Θ notation: Big - Θ analyzes an algorithm with most precise accuracy since while calculating Big - Θ, a uniform distribution of different type and length of inputs are considered, it provides the average time complexity of an algorithm, which is most precise while analyzing, however in practice sometimes it becomes difficult to find the uniformly distributed set of inputs for an algorithm, in that case, Big-O notation is used which represent the asymptotic upper bound of a function f.
For more details, please refer: Design and Analysis of Algorithms.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem