Drop Empty Columns in Pandas Last Updated : 17 Mar, 2025 Comments Improve Suggest changes Like Article Like Report Cleaning data is an essential step in data analysis. In this guide we will explore different ways to drop empty, null and zero-value columns in a Pandas DataFrame using Python. By the end you'll know how to efficiently clean your dataset using the dropna() and replace() methods. Understanding dropna()The dropna() function is a powerful method in Pandas that allows us to remove rows or columns containing missing values (NaN). Depending on the parameters used it can remove rows or columns where at least one value is missing or only those where all values are missing.Syntax: DataFrameName.dropna(axis=0, how='any', inplace=False)Parameters:axis: axis takes int or string value for rows/columns. Input can be 0 or 1 for Integer and ‘index’ or ‘columns’ for String.how: how takes string value of two kinds only (‘any’ or ‘all’). ‘any’ drops the row/column if ANY value is Null and ‘all’ drops only if ALL values are null.inplace: It is a boolean which makes the changes in the data frame itself if True. Create a Sample DataFrame:This is the sample data frame on which we will use to perform different operations. Python import numpy as np import pandas as pd df = pd.DataFrame({'FirstName': ['Vipul', 'Ashish', 'Milan'], "Gender": ["", "", ""], "Age": [0, 0, 0]}) df['Department'] = np.nan print(df) Output:Example 1: Remove All Null Value ColumnsThis method removes columns where all values are NaN. If a column is completely empty (contains only NaN values) it is unnecessary for analysis and can be removed using dropna(how='all', axis=1). Python import numpy as np import pandas as pd df = pd.DataFrame({'FirstName': ['Vipul', 'Ashish', 'Milan'], "Gender": ["", "", ""], "Age": [0, 0, 0]}) df['Department'] = np.nan display(df) df.dropna(how='all', axis=1, inplace=True) display(df) Output:Example 2: Replace Empty Strings with Null and Drop Null ColumnsIf a column contains empty strings we need to replace them with NaN before dropping the column. Empty strings are not automatically recognized as missing values in Pandas so converting them to NaN ensures they can be handled correctly. After conversion we use dropna(how='all', axis=1) to remove columns that are entirely empty. Python import numpy as np import pandas as pd df = pd.DataFrame({'FirstName': ['Vipul', 'Ashish', 'Milan'], "Gender": ["", "", ""], "Age": [0, 0, 0]}) df['Department'] = np.nan display(df) nan_value = float("NaN") df.replace("", nan_value, inplace=True) df.dropna(how='all', axis=1, inplace=True) display(df) Output:Example 3: Replace Zeros with Null and Drop Null ColumnsIf columns contain only zero values, we convert them to NaN before dropping them. Python import numpy as np import pandas as pd df = pd.DataFrame({'FirstName': ['Vipul', 'Ashish', 'Milan'], "Gender": ["", "", ""], "Age": [0, 0, 0]}) df['Department'] = np.nan display(df) nan_value = float("NaN") df.replace(0, nan_value, inplace=True) df.dropna(how='all', axis=1, inplace=True) display(df) Output:Example 4: Replace Both Zeros and Empty Strings with Null and Drop Null ColumnsTo clean a dataset fully we may need to replace both zeros and empty strings. Python import numpy as np import pandas as pd df = pd.DataFrame({'FirstName': ['Vipul', 'Ashish', 'Milan'], "Gender": ["", "", ""], "Age": [0, 0, 0]}) df['Department'] = np.nan display(df) nan_value = float("NaN") df.replace(0, nan_value, inplace=True) df.replace("", nan_value, inplace=True) df.dropna(how='all', axis=1, inplace=True) display(df) Output: Comment More infoAdvertise with us Next Article Drop Empty Columns in Pandas skrg141 Follow Improve Article Tags : Python Python-pandas Python pandas-dataFrame Practice Tags : python Similar Reads Pandas Drop Column When working with large datasets, there are often columns that are irrelevant or redundant. Pandas provides an efficient way to remove these unnecessary columns using the `drop()` function. In this article, we will cover various methods to drop columns from a DataFrame.Pythonimport pandas as pd data 4 min read How to Drop Index Column in Pandas? When working with Pandas DataFrames, it's common to reset or remove custom indexing, especially after filtering or modifying rows. Dropping the index is useful when:We no longer need a custom index.We want to restore default integer indexing (0, 1, 2, ...).We're preparing data for exports or transfo 2 min read Drop Duplicates Ignoring One Column-Pandas Pandas provide various features for users to implement on datasets. One such feature is dropping the duplicate rows, which can be done using the drop_duplicates function available in Pandas. There are some cases where the user wants to eliminate the duplicates but does not consider any certain colum 5 min read Pandas DataFrame.columns In Pandas, DataFrame.columns attribute returns the column names of a DataFrame. It gives access to the column labels, returning an Index object with the column labels that may be used for viewing, modifying, or creating new column labels for a DataFrame.Note: This attribute doesn't require any param 2 min read How to Exclude Columns in Pandas? Excluding columns in a Pandas DataFrame is a common operation when you want to work with only relevant data. In this article, we will discuss various methods to exclude columns from a DataFrame, including using .loc[], .drop(), and other techniques.Exclude One Column using .loc[]We can exclude a col 2 min read Create empty dataframe in Pandas The Pandas Dataframe is a structure that has data in the 2D format and labels with it. DataFrames are widely used in data science, machine learning, and other such places. DataFrames are the same as SQL tables or Excel sheets but these are faster in use.Empty DataFrame could be created with the help 1 min read How to Get Column Names in Pandas Dataframe While analyzing the real datasets which are often very huge in size, we might need to get the pandas column names in order to perform certain operations. The simplest way to get column names in Pandas is by using the .columns attribute of a DataFrame. Let's understand with a quick example:Pythonimpo 4 min read How to rename columns in Pandas DataFrame In this article, we will see how to rename column in Pandas DataFrame. The simplest way to rename columns in a Pandas DataFrame is to use the rename() function. This method allows renaming specific columns by passing a dictionary, where keys are the old column names and values are the new column nam 4 min read Split Pandas Dataframe by Column Index Pandas support two data structures for storing data the series (single column) and dataframe where values are stored in a 2D table (rows and columns).  To index  a  dataframe using the index we need to make use of dataframe.iloc() method which takes Syntax: pandas.DataFrame.iloc[] Parameters:Index 3 min read How to Find & Drop duplicate columns in a Pandas DataFrame? Letâs discuss How to Find and drop duplicate columns in a Pandas DataFrame. First, Letâs create a simple Dataframe with column names 'Name', 'Age', 'Domicile', and 'Age'/'Marks'. Find Duplicate Columns from a DataFrameTo find duplicate columns we need to iterate through all columns of a DataFrame a 4 min read Like