Double the first element and move zero to end
Last Updated :
09 Dec, 2022
For a given array of n integers and assume that '0' is an invalid number and all others a valid number. Convert the array in such a way that if both current and next element is valid and both have same value then double current value and replace the next number with 0. After the modification, rearrange the array such that all 0’s shift to the end.
Examples:
Input : arr[] = {2, 2, 0, 4, 0, 8}
Output : 4 4 8 0 0 0
Input : arr[] = {0, 2, 2, 2, 0, 6, 6, 0, 0, 8}
Output : 4 2 12 8 0 0 0 0 0 0
Source: Microsoft IDC Interview Experience | Set 150.
Approach: First modify the array as mentioned, i.e., if the next valid number is the same as the current number, double its value and replace the next number with 0.
Algorithm for Modification:
1. if n == 1
2. return
3. for i = 0 to n-2
4. if (arr[i] != 0) && (arr[i] == arr[i+1])
5. arr[i] = 2 * arr[i]
6. arr[i+1] = 0
7. i++
After modifying the array, Move all zeroes to the end of the array.
C++
// C++ implementation to rearrange the array elements after
// modification
#include <bits/stdc++.h>
using namespace std;
// function which pushes all zeros to end of an array.
void pushZerosToEnd(int arr[], int n)
{
// Count of non-zero elements
int count = 0;
// Traverse the array. If element encountered is
// non-zero, then replace the element at index 'count'
// with this element
for (int i = 0; i < n; i++)
if (arr[i] != 0)
// here count is incremented
arr[count++] = arr[i];
// Now all non-zero elements have been shifted to front
// and 'count' is set as index of first 0. Make all
// elements 0 from count to end.
while (count < n)
arr[count++] = 0;
}
// function to rearrange the array elements after
// modification
void modifyAndRearrangeArr(int arr[], int n)
{
// if 'arr[]' contains a single element only
if (n == 1)
return;
// traverse the array
for (int i = 0; i < n - 1; i++) {
// if true, perform the required modification
if ((arr[i] != 0) && (arr[i] == arr[i + 1])) {
// double current index value
arr[i] = 2 * arr[i];
// put 0 in the next index
arr[i + 1] = 0;
// increment by 1 so as to move two indexes
// ahead during loop iteration
i++;
}
}
// push all the zeros at the end of 'arr[]'
pushZerosToEnd(arr, n);
}
// function to print the array elements
void printArray(int arr[], int n)
{
for (int i = 0; i < n; i++)
cout << arr[i] << " ";
}
// Driver program to test above
int main()
{
int arr[] = { 0, 2, 2, 2, 0, 6, 6, 0, 0, 8 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Original array: ";
printArray(arr, n);
modifyAndRearrangeArr(arr, n);
cout << "\nModified array: ";
printArray(arr, n);
return 0;
}
C
// C implementation to rearrange the array elements after
// modification
#include <stdio.h>
// function which pushes all zeros to end of an array.
void pushZerosToEnd(int arr[], int n)
{
// Count of non-zero elements
int count = 0;
// Traverse the array. If element encountered is
// non-zero, then replace the element at index 'count'
// with this element
for (int i = 0; i < n; i++)
if (arr[i] != 0)
// here count is incremented
arr[count++] = arr[i];
// Now all non-zero elements have been shifted to front
// and 'count' is set as index of first 0. Make all
// elements 0 from count to end.
while (count < n)
arr[count++] = 0;
}
// function to rearrange the array elements after
// modification
void modifyAndRearrangeArr(int arr[], int n)
{
// if 'arr[]' contains a single element only
if (n == 1)
return;
// traverse the array
for (int i = 0; i < n - 1; i++) {
// if true, perform the required modification
if ((arr[i] != 0) && (arr[i] == arr[i + 1])) {
// double current index value
arr[i] = 2 * arr[i];
// put 0 in the next index
arr[i + 1] = 0;
// increment by 1 so as to move two indexes
// ahead during loop iteration
i++;
}
}
// push all the zeros at the end of 'arr[]'
pushZerosToEnd(arr, n);
}
// function to print the array elements
void printArray(int arr[], int n)
{
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
}
// Driver program to test above
int main()
{
int arr[] = { 0, 2, 2, 2, 0, 6, 6, 0, 0, 8 };
int n = sizeof(arr) / sizeof(arr[0]);
printf("Original array: ");
printArray(arr, n);
modifyAndRearrangeArr(arr, n);
printf("\nModified array: ");
printArray(arr, n);
return 0;
}
// This code is contributed by Sania Kumari Gupta
Java
// Java implementation to rearrange the
// array elements after modification
import java.io.*;
class GFG {
// function which pushes all
// zeros to end of an array.
static void pushZerosToEnd(int arr[], int n)
{
// Count of non-zero elements
int count = 0;
// Traverse the array. If element
// encountered is non-zero, then
// replace the element at index
// 'count' with this element
for (int i = 0; i < n; i++)
if (arr[i] != 0)
// here count is incremented
arr[count++] = arr[i];
// Now all non-zero elements
// have been shifted to front and
// 'count' is set as index of first 0.
// Make all elements 0 from count to end.
while (count < n)
arr[count++] = 0;
}
// function to rearrange the array
// elements after modification
static void modifyAndRearrangeArr(int arr[], int n)
{
// if 'arr[]' contains a single element
// only
if (n == 1)
return;
// traverse the array
for (int i = 0; i < n - 1; i++) {
// if true, perform the required modification
if ((arr[i] != 0) && (arr[i] == arr[i + 1]))
{
// double current index value
arr[i] = 2 * arr[i];
// put 0 in the next index
arr[i + 1] = 0;
// increment by 1 so as to move two
// indexes ahead during loop iteration
i++;
}
}
// push all the zeros at
// the end of 'arr[]'
pushZerosToEnd(arr, n);
}
// function to print the array elements
static void printArray(int arr[], int n)
{
for (int i = 0; i < n; i++)
System.out.print(arr[i] + " ");
System.out.println();
}
// Driver program to test above
public static void main(String[] args)
{
int arr[] = { 0, 2, 2, 2, 0, 6, 6, 0, 0, 8 };
int n = arr.length;
System.out.print("Original array: ");
printArray(arr, n);
modifyAndRearrangeArr(arr, n);
System.out.print("Modified array: ");
printArray(arr, n);
}
}
// This code is contributed
// by prerna saini
Python3
# Python3 implementation to rearrange
# the array elements after modification
# function which pushes all zeros
# to end of an array.
def pushZerosToEnd(arr, n):
# Count of non-zero elements
count = 0
# Traverse the array. If element
# encountered is non-zero, then
# replace the element at index
# 'count' with this element
for i in range(0, n):
if arr[i] != 0:
# here count is incremented
arr[count] = arr[i]
count+=1
# Now all non-zero elements have been
# shifted to front and 'count' is set
# as index of first 0. Make all
# elements 0 from count to end.
while (count < n):
arr[count] = 0
count+=1
# function to rearrange the array
# elements after modification
def modifyAndRearrangeArr(ar, n):
# if 'arr[]' contains a single
# element only
if n == 1:
return
# traverse the array
for i in range(0, n - 1):
# if true, perform the required modification
if (arr[i] != 0) and (arr[i] == arr[i + 1]):
# double current index value
arr[i] = 2 * arr[i]
# put 0 in the next index
arr[i + 1] = 0
# increment by 1 so as to move two
# indexes ahead during loop iteration
i+=1
# push all the zeros at the end of 'arr[]'
pushZerosToEnd(arr, n)
# function to print the array elements
def printArray(arr, n):
for i in range(0, n):
print(arr[i],end=" ")
# Driver program to test above
arr = [ 0, 2, 2, 2, 0, 6, 6, 0, 0, 8 ]
n = len(arr)
print("Original array:",end=" ")
printArray(arr, n)
modifyAndRearrangeArr(arr, n)
print("\nModified array:",end=" ")
printArray(arr, n)
# This code is contributed by Smitha Dinesh Semwal
C#
// C# implementation to rearrange the
// array elements after modification
using System;
class GFG {
// function which pushes all
// zeros to end of an array.
static void pushZerosToEnd(int[] arr, int n)
{
// Count of non-zero elements
int count = 0;
// Traverse the array. If element
// encountered is non-zero, then
// replace the element at index
// 'count' with this element
for (int i = 0; i < n; i++)
if (arr[i] != 0)
// here count is incremented
arr[count++] = arr[i];
// Now all non-zero elements
// have been shifted to front and
// 'count' is set as index of first 0.
// Make all elements 0 from count to end.
while (count < n)
arr[count++] = 0;
}
// function to rearrange the array
// elements after modification
static void modifyAndRearrangeArr(int[] arr, int n)
{
// if 'arr[]' contains a single element
// only
if (n == 1)
return;
// traverse the array
for (int i = 0; i < n - 1; i++) {
// if true, perform the required modification
if ((arr[i] != 0) && (arr[i] == arr[i + 1])) {
// double current index value
arr[i] = 2 * arr[i];
// put 0 in the next index
arr[i + 1] = 0;
// increment by 1 so as to move two
// indexes ahead during loop iteration
i++;
}
}
// push all the zeros at
// the end of 'arr[]'
pushZerosToEnd(arr, n);
}
// function to print the array elements
static void printArray(int[] arr, int n)
{
for (int i = 0; i < n; i++)
Console.Write(arr[i] + " ");
Console.WriteLine();
}
// Driver program to test above
public static void Main()
{
int[] arr = { 0, 2, 2, 2, 0, 6, 6, 0, 0, 8 };
int n = arr.Length;
Console.Write("Original array: ");
printArray(arr, n);
modifyAndRearrangeArr(arr, n);
Console.Write("Modified array: ");
printArray(arr, n);
}
}
// This code is contributed by Sam007
JavaScript
<script>
// JavaScript implementation to rearrange the array
// elements after modification
// function which pushes all zeros to end of
// an array.
function pushZerosToEnd(arr, n)
{
// Count of non-zero elements
var count = 0;
// Traverse the array. If element encountered
// is non-zero, then replace the element at
// index 'count' with this element
for (var i = 0; i < n; i++)
if (arr[i] != 0)
// here count is incremented
arr[count++] = arr[i];
// Now all non-zero elements have been shifted
// to front and 'count' is set as index of
// first 0. Make all elements 0 from count
// to end.
while (count < n) arr[count++] = 0;
}
// function to rearrange the array elements
// after modification
function modifyAndRearrangeArr(arr, n)
{
// if 'arr[]' contains a single element
// only
if (n == 1) return;
// traverse the array
for (var i = 0; i < n - 1; i++)
{
// if true, perform the required modification
if (arr[i] != 0 && arr[i] == arr[i + 1]) {
// double current index value
arr[i] = 2 * arr[i];
// put 0 in the next index
arr[i + 1] = 0;
// increment by 1 so as to move two
// indexes ahead during loop iteration
i++;
}
}
// push all the zeros at the end of 'arr[]'
pushZerosToEnd(arr, n);
}
// function to print the array elements
function printArray(arr, n)
{
for (var i = 0; i < n; i++) document.write(arr[i] + " ");
}
// Driver program to test above
var arr = [0, 2, 2, 2, 0, 6, 6, 0, 0, 8];
var n = arr.length;
document.write("Original array: ");
printArray(arr, n);
modifyAndRearrangeArr(arr, n);
document.write("<br>");
document.write("Modified array: ");
printArray(arr, n);
// This code is contributed by rdtank.
</script>
OutputOriginal array: 0 2 2 2 0 6 6 0 0 8
Modified array: 4 2 12 8 0 0 0 0 0 0
Time Complexity: O(n).
Auxiliary Space: O(1)
Approach with efficient zero shiftings:
Although the above solution is efficient, we can further optimise it in shifting zero algorithms by reducing the number of operations.
In the above shifting algorithms, we scan some elements twice when we set the count index to last index element to zero.
Efficient Zero Shifting Algorithms:
int lastSeenPositiveIndex = 0;
for( index = 0; index < n; index++)
{
if(array[index] != 0)
{
swap(array[index], array[lastSeenPositiveIndex]);
lastSeenPositiveIndex++;
}
}
C++
// Utility Function For Swapping Two Element Of An Array
void swap(int& a, int& b) { a = b + a - (b = a); }
// shift all zero to left side of an array
void shiftAllZeroToLeft(int array[], int n)
{
// Maintain last index with positive value
int lastSeenNonZero = 0;
for (index = 0; index < n; index++)
{
// If Element is non-zero
if (array[index] != 0)
{
// swap current index, with lastSeen non-zero
swap(array[index], array[lastSeenNonZero]);
// next element will be last seen non-zero
lastSeenNonZero++;
}
}
}
// This snippet is contributed By: Faizanur Rahman
Java
import java.io.*;
class GFG {
// Function For Swapping Two Element Of An Array
public static void swap(int[] A, int i, int j)
{
int temp = A[i];
A[i] = A[j];
A[j] = temp;
}
// shift all zero to left side of an array
static void shiftAllZeroToLeft(int array[], int n)
{
// Maintain last index with positive value
int lastSeenNonZero = 0;
for (int index = 0; index < n; index++) {
// If Element is non-zero
if (array[index] != 0) {
// swap current index, with lastSeen
// non-zero
swap(array, array[index],
array[lastSeenNonZero]);
// next element will be last seen non-zero
lastSeenNonZero++;
}
}
}
}
// This code is contributed By sam_2200
Python3
# Maintain last index with positive value
def shiftAllZeroToLeft(arr, n):
lastSeenNonZero = 0
for index in range(0, n):
# If Element is non-zero
if (array[index] != 0):
# swap current index, with lastSeen
# non-zero
array[index], array[lastSeenNonZero] = array[lastSeenNonZero], array[index]
# next element will be last seen non-zero
lastSeenNonZero++
# This code is contributed By sam_2200
C#
using System;
class GFG
{
// Function For Swapping Two Element Of An Array
public static void swap(int[] A, int i, int j)
{
int temp = A[i];
A[i] = A[j];
A[j] = temp;
}
// shift all zero to left side of an array
static void shiftAllZeroToLeft(int[] array, int n)
{
// Maintain last index with positive value
int lastSeenNonZero = 0;
for (int index = 0; index < n; index++)
{
// If Element is non-zero
if (array[index] != 0)
{
// swap current index, with lastSeen
// non-zero
swap(array, array[index],
array[lastSeenNonZero]);
// next element will be last seen non-zero
lastSeenNonZero++;
}
}
}
}
// This code is contributed By Saurabh Jaiswal
JavaScript
<script>
// Function For Swapping Two Element Of An Array
function swap(A,i,j)
{
let temp = A[i];
A[i] = A[j];
A[j] = temp;
}
// shift all zero to left side of an array
function shiftAllZeroToLeft(array,n)
{
// Maintain last index with positive value
let lastSeenNonZero = 0;
for (let index = 0; index < n; index++) {
// If Element is non-zero
if (array[index] != 0) {
// swap current index, with lastSeen
// non-zero
swap(array, array[index],
array[lastSeenNonZero]);
// next element will be last seen non-zero
lastSeenNonZero++;
}
}
}
}
// This code is contributed by sravan kumar Gottumukkala
</script>
Time Complexity: O(n)
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem