Difference Between Traditional Data and Big Data
Last Updated :
15 Jul, 2025
Data is information that helps businesses and organizations make decisions. Based on volume, variety, velocity, and mode of handling data, traditional data, and big data. It is quite helpful for organizations to understand these key dissimilarities to enable them to select the right approach in data storage, data processing, and data analysis.
Traditional data is the kind of information that is easy to organize and store in simple databases, like spreadsheets or small computer systems. This could be things like customer names, phone numbers, or sales records.
Big data, however, is much larger and more complex. It includes huge amounts of information from many different sources, such as social media, online videos, sensors in machines, or website clicks. Big data is harder to organize because it’s so large and comes in different forms, making it difficult for traditional tools to handle. In this article, we are going to discuss the different between traditional data and big data in detail.
What is Traditional Data?
Traditional data is the structured data that is being majorly maintained by all types of businesses starting from very small to big organizations. In a traditional database system, a centralized database architecture is used to store and maintain the data in a fixed format or fields in a file. For managing and accessing the data Structured Query Language (SQL) is used.
Traditional data is characterized by its high level of organization and structure, which makes it easy to store, manage, and analyze. Traditional data analysis techniques involve using statistical methods and visualizations to identify patterns and trends in the data.
Traditional data is often collected and managed by enterprise resource planning (ERP) systems and other enterprise-level applications. This data is critical for businesses to make informed decisions and drive performance improvements.
Advantages of Traditional Data
- Stored, managed easier with regular database systems.
- Great efficiency in data access and manipulation arises from having a structured data models.
- It is relatively inexpensive in storing and processing of data or datasets that are relatively small in size.
Disadvantages of Traditional Data
- This tends to be only applicable in structured formats and can therefore limit flexibility.
- This does not work well for unstructured data types such as text, images or videos.
- Worse when the number of inputs becomes too large and hence difficult to scale.
What is Big data?
We can consider big data an upper version of traditional data. Big data deal with too large or complex data sets which is difficult to manage in traditional data-processing application software. It deals with large volume of both structured, semi structured and unstructured data. Volume, Velocity and Variety, Veracity and Value refer to the 5'V characteristics of big data. Big data not only refers to large amount of data it refers to extracting meaningful data by analyzing the huge amount of complex data sets.
Big data is characterized by the three Vs: volume, velocity, and variety. Volume refers to the vast amount of data that is generated and collected; velocity refers to the speed at which data is generated and must be processed; and variety refers to the many different types and formats of data that must be analyzed, including structured, semi-structured, and unstructured data.
Due to the size and complexity of big data sets, traditional data management tools and techniques are often inadequate for processing and analyzing the data. Big data technologies, such as Hadoop, Spark, and NoSQL databases, have emerged to help organizations store, manage, and analyze large volumes of data.
Advantages of Big Data
- It covers structured, semi structured as well as un structured data.
- Allows use of sophisticated analyses such as forecasting and artificial intelligence.
- This is scalable meaning organizations can handle huge volumes of data in the system.
Disadvantages of Big Data
- Physical infrastructure needed reduces adaptability and so the cost is generally higher.
- The analysis of big data takes time.
- Protecting data privacy and security is even harder.
The Main Differences Between Traditional Data and Big Data as Follows
- Volume: Traditional data typically refers to small to medium-sized datasets that can be easily stored and analyzed using traditional data processing technologies. In contrast, big data refers to extremely large datasets that cannot be easily managed or processed using traditional technologies.
- Variety: Traditional data is typically structured, meaning it is organized in a predefined manner such as tables, columns, and rows. Big data, on the other hand, can be structured, unstructured, or semi-structured, meaning it may contain text, images, videos, or other types of data.
- Velocity: Traditional data is usually static and updated on a periodic basis. In contrast, big data is constantly changing and updated in real-time or near real-time.
- Complexity: Traditional data is relatively simple to manage and analyze. Big data, on the other hand, is complex and requires specialized tools and techniques to manage, process, and analyze.
- Value: Traditional data typically has a lower potential value than big data because it is limited in scope and size. Big data, on the other hand, can provide valuable insights into customer behavior, market trends, and other business-critical information.
Some Similarities Between Traditional Data and Big Data
- Data Quality: The quality of data is essential in both traditional and big data environments. Accurate and reliable data is necessary for making informed business decisions.
- Data Analysis: Both traditional and big data require some form of analysis to derive insights and knowledge from the data. Traditional data analysis methods typically involve statistical techniques and visualizations, while big data analysis may require machine learning and other advanced techniques.
- Data Storage: In both traditional and big data environments, data needs to be stored and managed effectively. Traditional data is typically stored in relational databases, while big data may require specialized technologies such as Hadoop, NoSQL, or cloud-based storage systems.
- Data Security: Data security is a critical consideration in both traditional and big data environments. Protecting sensitive information from unauthorized access, theft, or misuse is essential in both contexts.
- Business Value: Both traditional and big data can provide significant value to organizations. Traditional data can provide insights into historical trends and patterns, while big data can uncover new opportunities and help organizations make more informed decisions.
The Difference Between Traditional Data and Big Data
Traditional Data | Big Data |
---|
Traditional data is generated in enterprise level. | Big data is generated outside the enterprise level. |
Its volume ranges from Gigabytes to Terabytes. | Its volume ranges from Petabytes to Zettabytes or Exabytes. |
Traditional database system deals with structured data. | Big data system deals with structured, semi-structured,database, and unstructured data. |
Traditional data is generated per hour or per day or more. | But big data is generated more frequently mainly per seconds. |
Traditional data source is centralized and it is managed in centralized form. | Big data source is distributed and it is managed in distributed form. |
Data integration is very easy. | Data integration is very difficult. |
Normal system configuration is capable to process traditional data. | High system configuration is required to process big data. |
The size of the data is very small. | The size is more than the traditional data size. |
Traditional data base tools are required to perform any data base operation. | Special kind of data base tools are required to perform any database schema based operation. |
Normal functions can manipulate data. | Special kind of functions can manipulate data. |
Its data model is strict schema based and it is static. | Its data model is a flat schema based and it is dynamic. |
Traditional data is stable and inter relationship. | Big data is not stable and unknown relationship. |
Traditional data is in manageable volume. | Big data is in huge volume which becomes unmanageable. |
It is easy to manage and manipulate the data. | It is difficult to manage and manipulate the data. |
Its data sources includes ERP transaction data, CRM transaction data, financial data, organizational data, web transaction data etc. | Its data sources includes social media, device data, sensor data, video, images, audio etc. |
Conclusion
The key differences between traditional data and big data are related to the volume, variety, velocity, complexity, and potential value of the data. Traditional data is typically small in size, structured, and static, while big data is large, complex, and constantly changing. As a result, big data requires specialized tools and techniques to manage and analyze effectively.
Similar Reads
DBMS Tutorial â Learn Database Management System Database Management System (DBMS) is a software used to manage data from a database. A database is a structured collection of data that is stored in an electronic device. The data can be text, video, image or any other format.A relational database stores data in the form of tables and a NoSQL databa
7 min read
Basic of DBMS
Introduction of DBMS (Database Management System)DBMS is a software system that manages, stores, and retrieves data efficiently in a structured format.It allows users to create, update, and query databases efficiently.Ensures data integrity, consistency, and security across multiple users and applications.Reduces data redundancy and inconsistency
6 min read
History of DBMSThe first database management systems (DBMS) were created to handle complex data for businesses in the 1960s. These systems included Charles Bachman's Integrated Data Store (IDS) and IBM's Information Management System (IMS). Databases were first organized into tree-like structures using hierarchica
7 min read
DBMS Architecture 1-level, 2-Level, 3-LevelA DBMS architecture defines how users interact with the database to read, write, or update information. A well-designed architecture and schema (a blueprint detailing tables, fields and relationships) ensure data consistency, improve performance and keep data secure.Types of DBMS Architecture There
6 min read
Difference between File System and DBMSA file system and a DBMS are two kinds of data management systems that are used in different capacities and possess different characteristics. A File System is a way of organizing files into groups and folders and then storing them in a storage device. It provides the media that stores data as well
6 min read
Entity Relationship Model
Introduction of ER ModelThe Entity-Relationship Model (ER Model) is a conceptual model for designing a databases. This model represents the logical structure of a database, including entities, their attributes and relationships between them. Entity: An objects that is stored as data such as Student, Course or Company.Attri
10 min read
Structural Constraints of Relationships in ER ModelStructural constraints, within the context of Entity-Relationship (ER) modeling, specify and determine how the entities take part in the relationships and this gives an outline of how the interactions between the entities can be designed in a database. Two primary types of constraints are cardinalit
5 min read
Generalization, Specialization and Aggregation in ER ModelUsing the ER model for bigger data creates a lot of complexity while designing a database model, So in order to minimize the complexity Generalization, Specialization and Aggregation were introduced in the ER model. These were used for data abstraction. In which an abstraction mechanism is used to h
4 min read
Introduction of Relational Model and Codd Rules in DBMSThe Relational Model is a fundamental concept in Database Management Systems (DBMS) that organizes data into tables, also known as relations. This model simplifies data storage, retrieval, and management by using rows and columns. Coddâs Rules, introduced by Dr. Edgar F. Codd, define the principles
14 min read
Keys in Relational ModelIn the context of a relational database, keys are one of the basic requirements of a relational database model. Keys are fundamental components that ensure data integrity, uniqueness and efficient access. It is widely used to identify the tuples(rows) uniquely in the table. We also use keys to set u
6 min read
Mapping from ER Model to Relational ModelConverting an Entity-Relationship (ER) diagram to a Relational Model is a crucial step in database design. The ER model represents the conceptual structure of a database, while the Relational Model is a physical representation that can be directly implemented using a Relational Database Management S
7 min read
Strategies for Schema design in DBMSThere are various strategies that are considered while designing a schema. Most of these strategies follow an incremental approach that is, they must start with some schema constructs derived from the requirements and then they incrementally modify, refine or build on them. What is Schema Design?Sch
6 min read
Relational Model
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Relational Algebra
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Functional Dependencies & Normalization
Attribute Closure in DBMSFunctional dependency and attribute closure are essential for maintaining data integrity and building effective, organized and normalized databases. Attribute closure of an attribute set can be defined as set of attributes which can be functionally determined from it.How to find attribute closure of
4 min read
Armstrong's Axioms in Functional Dependency in DBMSArmstrong's Axioms refer to a set of inference rules, introduced by William W. Armstrong, that are used to test the logical implication of functional dependencies. Given a set of functional dependencies F, the closure of F (denoted as F+) is the set of all functional dependencies logically implied b
4 min read
Canonical Cover of Functional Dependencies in DBMSManaging a large set of functional dependencies can result in unnecessary computational overhead. This is where the canonical cover becomes useful. A canonical cover is a set of functional dependencies that is equivalent to a given set of functional dependencies but is minimal in terms of the number
7 min read
Normal Forms in DBMSIn the world of database management, Normal Forms are important for ensuring that data is structured logically, reducing redundancy, and maintaining data integrity. When working with databases, especially relational databases, it is critical to follow normalization techniques that help to eliminate
7 min read
The Problem of Redundancy in DatabaseRedundancy means having multiple copies of the same data in the database. This problem arises when a database is not normalized. Suppose a table of student details attributes is: student ID, student name, college name, college rank, and course opted. Student_ID Name Contact College Course Rank 100Hi
6 min read
Lossless Join and Dependency Preserving DecompositionDecomposition of a relation is done when a relation in a relational model is not in appropriate normal form. Relation R is decomposed into two or more relations if decomposition is lossless join as well as dependency preserving. Lossless Join DecompositionIf we decompose a relation R into relations
4 min read
Denormalization in DatabasesDenormalization is a database optimization technique in which we add redundant data to one or more tables. This can help us avoid costly joins in a relational database. Note that denormalization does not mean 'reversing normalization' or 'not to normalize'. It is an optimization technique that is ap
4 min read
Transactions & Concurrency Control
ACID Properties in DBMSTransactions are fundamental operations that allow us to modify and retrieve data. However, to ensure the integrity of a database, it is important that these transactions are executed in a way that maintains consistency, correctness, and reliability even in case of failures / errors. This is where t
5 min read
Types of Schedules in DBMSScheduling is the process of determining the order in which transactions are executed. When multiple transactions run concurrently, scheduling ensures that operations are executed in a way that prevents conflicts or overlaps between them.There are several types of schedules, all of them are depicted
6 min read
Recoverability in DBMSRecoverability ensures that after a failure, the database can restore a consistent state by keeping committed changes and undoing uncommitted ones. It uses logs to redo or undo actions, preventing data loss and maintaining integrity.There are several levels of recoverability that can be supported by
5 min read
Implementation of Locking in DBMSLocking protocols are used in database management systems as a means of concurrency control. Multiple transactions may request a lock on a data item simultaneously. Hence, we require a mechanism to manage the locking requests made by transactions. Such a mechanism is called a Lock Manager. It relies
5 min read
Deadlock in DBMSA deadlock occurs in a multi-user database environment when two or more transactions block each other indefinitely by each holding a resource the other needs. This results in a cycle of dependencies (circular wait) where no transaction can proceed.For Example: Consider the image belowDeadlock in DBM
4 min read
Starvation in DBMSStarvation in DBMS is a problem that happens when some processes are unable to get the resources they need because other processes keep getting priority. This can happen in situations like locking or scheduling, where some processes keep getting the resources first, leaving others waiting indefinite
8 min read
Advanced DBMS
Indexing in DatabasesIndexing in DBMS is used to speed up data retrieval by minimizing disk scans. Instead of searching through all rows, the DBMS uses index structures to quickly locate data using key values.When an index is created, it stores sorted key values and pointers to actual data rows. This reduces the number
6 min read
Introduction of B TreeA B-Tree is a specialized m-way tree designed to optimize data access, especially on disk-based storage systems. In a B-Tree of order m, each node can have up to m children and m-1 keys, allowing it to efficiently manage large datasets.The value of m is decided based on disk block and key sizes.One
8 min read
Introduction of B+ TreeA B+ Tree is an advanced data structure used in database systems and file systems to maintain sorted data for fast retrieval, especially from disk. It is an extended version of the B Tree, where all actual data is stored only in the leaf nodes, while internal nodes contain only keys for navigation.C
5 min read
Bitmap Indexing in DBMSBitmap Indexing is a powerful data indexing technique used in Database Management Systems (DBMS) to speed up queries- especially those involving large datasets and columns with only a few unique values (called low-cardinality columns).In a database table, some columns only contain a few different va
3 min read
Inverted IndexAn Inverted Index is a data structure used in information retrieval systems to efficiently retrieve documents or web pages containing a specific term or set of terms. In an inverted index, the index is organized by terms (words), and each term points to a list of documents or web pages that contain
7 min read
SQL Queries on Clustered and Non-Clustered IndexesIndexes in SQL play a pivotal role in enhancing database performance by enabling efficient data retrieval without scanning the entire table. The two primary types of indexes Clustered Index and Non-Clustered Index serve distinct purposes in optimizing query performance. In this article, we will expl
7 min read
File Organization in DBMSFile organization in DBMS refers to the method of storing data records in a file so they can be accessed efficiently. It determines how data is arranged, stored, and retrieved from physical storage.The Objective of File OrganizationIt helps in the faster selection of records i.e. it makes the proces
5 min read
DBMS Practice