Indexing in DBMS is used to speed up data retrieval by minimizing disk scans. Instead of searching through all rows, the DBMS uses index structures to quickly locate data using key values.
When an index is created, it stores sorted key values and pointers to actual data rows. This reduces the number of disk accesses, improving performance especially on large datasets.
Structure of Index in DatabaseAttributes of Indexing
Several Important attributes of indexing affect the performance and efficiency of database operations:
- Access Types: This refers to the type of access such as value-based search, range access, etc.
- Access Time: It refers to the time needed to find a particular data element or set of elements.
- Insertion Time: It refers to the time taken to find the appropriate space and insert new data.
- Deletion Time: Time taken to find an item and delete it as well as update the index structure.
- Space Overhead: It refers to the additional space required by the index.
Structure of Index in DatabaseFile Organization in Indexing
File organization refers to how data and indexes are physically stored in memory or on disk. The following are the common types of file organizations used in indexing:
1. Sequential (Ordered) File Organization
In this type of organization, the indices are based on a sorted ordering of the values. These are generally fast and a more traditional type of storing mechanism. These Ordered or Sequential file organizations might store the data in a dense or sparse format.
i. Dense Index: Every search key value in the data file corresponds to an index record. This method ensures that each key value has a reference to its data location.
Example: If a table contains multiple entries for the same key, a dense index ensures that each key value has its own index record.
Dense Indexii. Sparse Index: The index record appears only for a few items in the data file. Each item points to a block as shown. To locate a record, we find the index record with the largest search key value less than or equal to the search key value we are looking for.
Access Method: To locate a record, we find the index record with the largest key value less than or equal to the search key, and then follow the pointers sequentially.
Access Cost = \log_2(n) + 1 , where n is the number of blocks involved in the index file.
Sparse Index2. Hash File Organization
Uses a hash function to map keys to buckets.
- Offers fast access for exact-match queries.
- Not suitable for range queries.
Types of Indexing Methods
There are different types of indexing techniques, each optimized for specific use cases.
1. Clustered Indexing
Clustered Indexing stores related records together in the same file, reducing search time and improving performance, especially for join operations. Data is stored in sorted order based on a key (often a non-primary key) to group similar records, like students by semester. If the indexed column isn't unique, multiple columns can be combined to form a unique key. This makes data retrieval faster by keeping related records close and allowing quicker access through the index.
Clustered Indexing2. Primary Indexing
This is a type of Clustered Indexing wherein the data is sorted according to the search key and the primary key of the database table is used to create the index. It is a default format of indexing where it induces sequential file organization. As primary keys are unique and are stored in a sorted manner, the performance of the searching operation is quite efficient.
Key Features: The data is stored in sequential order, making searches faster and more efficient.
3. Non-clustered or Secondary Indexing
A non-clustered index just tells us where the data lies, i.e. it gives us a list of virtual pointers or references to the location where the data is actually stored. Data is not physically stored in the order of the index. Instead, data is present in leaf nodes.
Example: The contents page of a book. Each entry gives us the page number or location of the information stored. The actual data here(information on each page of the book) is not organized but we have an ordered reference(contents page) to where the data points actually lie. We can have only dense ordering in the non-clustered index as sparse ordering is not possible because data is not physically organized accordingly.
It requires more time as compared to the clustered index because some amount of extra work is done in order to extract the data by further following the pointer. In the case of a clustered index, data is directly present in front of the index.
Non Clustered Indexing4. Multilevel Indexing
With the growth of the size of the database, indices also grow. As the index is stored in the main memory, a single-level index might become too large a size to store with multiple disk accesses. The multilevel indexing segregates the main block into various smaller blocks so that the same can be stored in a single block.
The outer blocks are divided into inner blocks which in turn are pointed to the data blocks. This can be easily stored in the main memory with fewer overheads. This hierarchical approach reduces memory overhead and speeds up query execution.
Multilevel IndexingAdvantages of Indexing
- Faster Queries: Indexes allow quick search of rows matching specific values, speeding up data retrieval.
- Efficient Access: Reduces disk I/O by keeping frequently accessed data in memory.
- Improved Sorting: Speeds up sorting by indexing the relevant columns.
- Consistent Performance: Maintains query speed even as data grows.
- Data Integrity: Ensures uniqueness in columns indexed as unique, preventing duplicate entries.
Disadvantages of Indexing
While indexing offers many advantages, it also comes with certain trade-offs:
- Increased Storage Space: Indexes require additional storage. Depending on the size of the data, this can significantly increase the overall storage requirements.
- Increased Maintenance Overhead: Indexes must be updated whenever data is inserted, deleted, or modified, which can slow down these operations.
- Slower Insert/Update Operations: Since indexes must be maintained and updated, inserting or updating data takes longer than in a non-indexed database.
- Complexity in Choosing the Right Index: Determining the appropriate indexing strategy for a particular dataset can be challenging and requires an understanding of query patterns and access behaviors.
Features of Indexing
Several key features define the indexing process in databases:
- Efficient Data Structures: Indexes use efficient data structures like B-trees, B+ trees, and hash tables to enable fast data retrieval.
- Periodic Index Maintenance: Indexes need to be periodically maintained, especially when the underlying data changes frequently. Maintenance tasks include updating, rebuilding, or removing obsolete indexes.
- Query Optimization: Indexes play a critical role in query optimization. The DBMS query optimizer uses indexes to determine the most efficient execution plan for a query.
- Handling Fragmentation: Index fragmentation can reduce the effectiveness of an index. Regular defragmentation can help maintain optimal performance.
Indexing in Database
Clustered Index in DBMS
Non Clustered Index in DBMS
B and B+ Tree in DBMS
Multi Level Indexing in DBMS
Indexing | Dense Index and Sparse Indexing
Similar Reads
DBMS Tutorial â Learn Database Management System Database Management System (DBMS) is a software used to manage data from a database. A database is a structured collection of data that is stored in an electronic device. The data can be text, video, image or any other format.A relational database stores data in the form of tables and a NoSQL databa
7 min read
Basic of DBMS
Entity Relationship Model
Introduction of ER ModelThe Entity-Relationship Model (ER Model) is a conceptual model for designing a databases. This model represents the logical structure of a database, including entities, their attributes and relationships between them. Entity: An objects that is stored as data such as Student, Course or Company.Attri
10 min read
Structural Constraints of Relationships in ER ModelStructural constraints, within the context of Entity-Relationship (ER) modeling, specify and determine how the entities take part in the relationships and this gives an outline of how the interactions between the entities can be designed in a database. Two primary types of constraints are cardinalit
5 min read
Generalization, Specialization and Aggregation in ER ModelUsing the ER model for bigger data creates a lot of complexity while designing a database model, So in order to minimize the complexity Generalization, Specialization and Aggregation were introduced in the ER model. These were used for data abstraction. In which an abstraction mechanism is used to h
4 min read
Introduction of Relational Model and Codd Rules in DBMSThe Relational Model is a fundamental concept in Database Management Systems (DBMS) that organizes data into tables, also known as relations. This model simplifies data storage, retrieval, and management by using rows and columns. Coddâs Rules, introduced by Dr. Edgar F. Codd, define the principles
14 min read
Keys in Relational ModelIn the context of a relational database, keys are one of the basic requirements of a relational database model. Keys are fundamental components that ensure data integrity, uniqueness and efficient access. It is widely used to identify the tuples(rows) uniquely in the table. We also use keys to set u
6 min read
Mapping from ER Model to Relational ModelConverting an Entity-Relationship (ER) diagram to a Relational Model is a crucial step in database design. The ER model represents the conceptual structure of a database, while the Relational Model is a physical representation that can be directly implemented using a Relational Database Management S
7 min read
Strategies for Schema design in DBMSThere are various strategies that are considered while designing a schema. Most of these strategies follow an incremental approach that is, they must start with some schema constructs derived from the requirements and then they incrementally modify, refine or build on them. What is Schema Design?Sch
6 min read
Relational Model
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Relational Algebra
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Functional Dependencies & Normalization
Attribute Closure in DBMSFunctional dependency and attribute closure are essential for maintaining data integrity and building effective, organized and normalized databases. Attribute closure of an attribute set can be defined as set of attributes which can be functionally determined from it.How to find attribute closure of
4 min read
Armstrong's Axioms in Functional Dependency in DBMSArmstrong's Axioms refer to a set of inference rules, introduced by William W. Armstrong, that are used to test the logical implication of functional dependencies. Given a set of functional dependencies F, the closure of F (denoted as F+) is the set of all functional dependencies logically implied b
4 min read
Canonical Cover of Functional Dependencies in DBMSManaging a large set of functional dependencies can result in unnecessary computational overhead. This is where the canonical cover becomes useful. A canonical cover is a set of functional dependencies that is equivalent to a given set of functional dependencies but is minimal in terms of the number
7 min read
Normal Forms in DBMSIn the world of database management, Normal Forms are important for ensuring that data is structured logically, reducing redundancy, and maintaining data integrity. When working with databases, especially relational databases, it is critical to follow normalization techniques that help to eliminate
7 min read
The Problem of Redundancy in DatabaseRedundancy means having multiple copies of the same data in the database. This problem arises when a database is not normalized. Suppose a table of student details attributes is: student ID, student name, college name, college rank, and course opted. Student_ID Name Contact College Course Rank 100Hi
6 min read
Lossless Join and Dependency Preserving DecompositionDecomposition of a relation is done when a relation in a relational model is not in appropriate normal form. Relation R is decomposed into two or more relations if decomposition is lossless join as well as dependency preserving. Lossless Join DecompositionIf we decompose a relation R into relations
4 min read
Denormalization in DatabasesDenormalization is a database optimization technique in which we add redundant data to one or more tables. This can help us avoid costly joins in a relational database. Note that denormalization does not mean 'reversing normalization' or 'not to normalize'. It is an optimization technique that is ap
4 min read
Transactions & Concurrency Control
ACID Properties in DBMSIn the world of DBMS, transactions are fundamental operations that allow us to modify and retrieve data. However, to ensure the integrity of a database, it is important that these transactions are executed in a way that maintains consistency, correctness, and reliability. This is where the ACID prop
6 min read
Types of Schedules in DBMSScheduling is the process of determining the order in which transactions are executed. When multiple transactions run concurrently, scheduling ensures that operations are executed in a way that prevents conflicts or overlaps between them.There are several types of schedules, all of them are depicted
6 min read
Recoverability in DBMSRecoverability ensures that after a failure, the database can restore a consistent state by keeping committed changes and undoing uncommitted ones. It uses logs to redo or undo actions, preventing data loss and maintaining integrity.There are several levels of recoverability that can be supported by
5 min read
Implementation of Locking in DBMSLocking protocols are used in database management systems as a means of concurrency control. Multiple transactions may request a lock on a data item simultaneously. Hence, we require a mechanism to manage the locking requests made by transactions. Such a mechanism is called a Lock Manager. It relies
5 min read
Deadlock in DBMSA deadlock occurs in a multi-user database environment when two or more transactions block each other indefinitely by each holding a resource the other needs. This results in a cycle of dependencies (circular wait) where no transaction can proceed.For Example: Consider the image belowDeadlock in DBM
4 min read
Starvation in DBMSStarvation in DBMS is a problem that happens when some processes are unable to get the resources they need because other processes keep getting priority. This can happen in situations like locking or scheduling, where some processes keep getting the resources first, leaving others waiting indefinite
8 min read
Advanced DBMS
Indexing in DatabasesIndexing in DBMS is used to speed up data retrieval by minimizing disk scans. Instead of searching through all rows, the DBMS uses index structures to quickly locate data using key values.When an index is created, it stores sorted key values and pointers to actual data rows. This reduces the number
6 min read
Introduction of B TreeA B-Tree is a specialized m-way tree designed to optimize data access, especially on disk-based storage systems. In a B-Tree of order m, each node can have up to m children and m-1 keys, allowing it to efficiently manage large datasets.The value of m is decided based on disk block and key sizes.One
8 min read
Introduction of B+ TreeA B+ Tree is an advanced data structure used in database systems and file systems to maintain sorted data for fast retrieval, especially from disk. It is an extended version of the B Tree, where all actual data is stored only in the leaf nodes, while internal nodes contain only keys for navigation.C
5 min read
Bitmap Indexing in DBMSBitmap Indexing is a powerful data indexing technique used in Database Management Systems (DBMS) to speed up queries- especially those involving large datasets and columns with only a few unique values (called low-cardinality columns).In a database table, some columns only contain a few different va
3 min read
Inverted IndexAn Inverted Index is a data structure used in information retrieval systems to efficiently retrieve documents or web pages containing a specific term or set of terms. In an inverted index, the index is organized by terms (words), and each term points to a list of documents or web pages that contain
7 min read
SQL Queries on Clustered and Non-Clustered IndexesIndexes in SQL play a pivotal role in enhancing database performance by enabling efficient data retrieval without scanning the entire table. The two primary types of indexes Clustered Index and Non-Clustered Index serve distinct purposes in optimizing query performance. In this article, we will expl
7 min read
File Organization in DBMSFile organization in DBMS refers to the method of storing data records in a file so they can be accessed efficiently. It determines how data is arranged, stored, and retrieved from physical storage.The Objective of File OrganizationIt helps in the faster selection of records i.e. it makes the proces
5 min read
DBMS Practice