A Data Model in Database Management System (DBMS) is the concept of tools that are developed to summarize the description of the database. Data Models provide us with a transparent picture of data which helps us in creating an actual database. It shows us from the design of the data to its proper implementation of data.
Types of Relational Models
- Conceptual Data Model
- Representational Data Model
- Physical Data Model
It is basically classified into 3 types:-
Data Models
1. Conceptual Data Model
The conceptual data model describes the database at a very high level and is useful to understand the needs or requirements of the database. It is this model, that is used in the requirement-gathering process i.e. before the Database Designers start making a particular database. One such popular model is the entity/relationship model (ER model). The E/R model specializes in entities, relationships, and even attributes that are used by database designers. In terms of this concept, a discussion can be made even with non-computer science(non-technical) users and stakeholders, and their requirements can be understood.
Entity-Relationship Model( ER Model): It is a high-level data model which is used to define the data and the relationships between them. It is basically a conceptual design of any database which is easy to design the view of data.
Components of ER Model:
- Entity: An entity is referred to as a real-world object. It can be a name, place, object, class, etc. These are represented by a rectangle in an ER Diagram.
- Attributes: An attribute can be defined as the description of the entity. These are represented by Ellipse in an ER Diagram. It can be Age, Roll Number, or Marks for a Student.
- Relationship: Relationships are used to define relations among different entities. Diamonds and Rhombus are used to show Relationships.
Characteristics of a conceptual data model
- Offers Organization-wide coverage of the business concepts.
- This type of Data Models are designed and developed for a business audience.
- The conceptual model is developed independently of hardware specifications like data storage capacity, location or software specifications like DBMS vendor and technology. The focus is to represent data as a user will see it in the “real world.”
Conceptual data models known as Domain models create a common vocabulary for all stakeholders by establishing basic concepts and scope
2. Representational Data Model
This type of data model is used to represent only the logical part of the database and does not represent the physical structure of the database. The representational data model allows us to focus primarily, on the design part of the database. A popular representational model is a Relational model. The relational Model consists of Relational Algebra and Relational Calculus. In the Relational Model, we basically use tables to represent our data and the relationships between them. It is a theoretical concept whose practical implementation is done in Physical Data Model.
The advantage of using a Representational data model is to provide a foundation to form the base for the Physical model.
Characteristics of Representational Data Model
- Represents the logical structure of the database.
- Relational models like Relational Algebra and Relational Calculus are commonly used.
- Uses tables to represent data and relationships.
- Provides a foundation for building the physical data model.
3. Physical Data Model
The physical Data Model is used to practically implement Relational Data Model. Ultimately, all data in a database is stored physically on a secondary storage device such as discs and tapes. This is stored in the form of files, records, and certain other data structures. It has all the information on the format in which the files are present and the structure of the databases, the presence of external data structures, and their relation to each other. Here, we basically save tables in memory so they can be accessed efficiently. In order to come up with a good physical model, we have to work on the relational model in a better way. Structured Query Language (SQL) is used to practically implement Relational Algebra.
This Data Model describes HOW the system will be implemented using a specific DBMS system. This model is typically created by DBA and developers. The purpose is actual implementation of the database.
Characteristics of a physical data model:
- The physical data model describes data need for a single project or application though it maybe integrated with other physical data models based on project scope.
- Data Model contains relationships between tables that which addresses cardinality and nullability of the relationships.
- Developed for a specific version of a DBMS, location, data storage or technology to be used in the project.
- Columns should have exact datatypes, lengths assigned and default values.
- Primary and Foreign keys, views, indexes, access profiles, and authorizations, etc. are defined
Some Other Data Models
1. Hierarchical Model
The hierarchical Model is one of the oldest models in the data model which was developed by IBM, in the 1950s. In a hierarchical model, data are viewed as a collection of tables, or we can say segments that form a hierarchical relation. In this, the data is organized into a tree-like structure where each record consists of one parent record and many children. Even if the segments are connected as a chain-like structure by logical associations, then the instant structure can be a fan structure with multiple branches. We call the illogical associations as directional associations.
2. Network Model
The Network Model was formalized by the Database Task group in the 1960s. This model is the generalization of the hierarchical model. This model can consist of multiple parent segments and these segments are grouped as levels but there exists a logical association between the segments belonging to any level. Mostly, there exists a many-to-many logical association between any of the two segments.
3. Object-Oriented Data Model
In the Object-Oriented Data Model, data and their relationships are contained in a single structure which is referred to as an object in this data model. In this, real-world problems are represented as objects with different attributes. All objects have multiple relationships between them. Basically, it is a combination of Object Oriented programming and a Relational Database Model.
4. Float Data Model
The float data model basically consists of a two-dimensional array of data models that do not contain any duplicate elements in the array. This data model has one drawback it cannot store a large amount of data that is the tables can not be of large size.
5. Context Data Model
The Context data model is simply a data model which consists of more than one data model. For example, the Context data model consists of ER Model, Object-Oriented Data Model, etc. This model allows users to do more than one thing which each individual data model can do.
6. Semi-Structured Data Model
Semi-Structured data models deal with the data in a flexible way. Some entities may have extra attributes and some entities may have some missing attributes. Basically, you can represent data here in a flexible way.
Advantages of Data Models
- Data Models help us in representing data accurately.
- It helps us in finding the missing data and also in minimizing Data Redundancy.
- Data Model provides data security in a better way.
- The data model should be detailed enough to be used for building the physical database.
- The information in the data model can be used for defining the relationship between tables, primary and foreign keys, and stored procedures.
Disadvantages of Data Models
- In the case of a vast database, sometimes it becomes difficult to understand the data model.
- You must have the proper knowledge of SQL to use physical models.
- Even smaller change made in structure require modification in the entire application.
- There is no set data manipulation language in DBMS.
- To develop Data model one should know physical data stored characteristics.
Conclusion
In conclusion, data modeling is a crucial process for designing databases that ensure consistency, quality, and accuracy in how data is stored and managed. It establishes a structured framework using conceptual, logical, and physical models to define entities, relationships, and implementation details. While data modeling supports better organization and ensures data integrity, it can be challenging due to the impact of structural changes on the entire application. Despite its drawbacks, data modeling is essential for creating efficient, reliable, and scalable database systems.
Similar Reads
DBMS Tutorial â Learn Database Management System Database Management System (DBMS) is a software used to manage data from a database. A database is a structured collection of data that is stored in an electronic device. The data can be text, video, image or any other format.A relational database stores data in the form of tables and a NoSQL databa
7 min read
Basic of DBMS
Entity Relationship Model
Introduction of ER ModelThe Entity-Relationship Model (ER Model) is a conceptual model for designing a databases. This model represents the logical structure of a database, including entities, their attributes and relationships between them. Entity: An objects that is stored as data such as Student, Course or Company.Attri
10 min read
Structural Constraints of Relationships in ER ModelStructural constraints, within the context of Entity-Relationship (ER) modeling, specify and determine how the entities take part in the relationships and this gives an outline of how the interactions between the entities can be designed in a database. Two primary types of constraints are cardinalit
5 min read
Generalization, Specialization and Aggregation in ER ModelUsing the ER model for bigger data creates a lot of complexity while designing a database model, So in order to minimize the complexity Generalization, Specialization and Aggregation were introduced in the ER model. These were used for data abstraction. In which an abstraction mechanism is used to h
4 min read
Introduction of Relational Model and Codd Rules in DBMSThe Relational Model is a fundamental concept in Database Management Systems (DBMS) that organizes data into tables, also known as relations. This model simplifies data storage, retrieval, and management by using rows and columns. Coddâs Rules, introduced by Dr. Edgar F. Codd, define the principles
14 min read
Keys in Relational ModelIn the context of a relational database, keys are one of the basic requirements of a relational database model. Keys are fundamental components that ensure data integrity, uniqueness and efficient access. It is widely used to identify the tuples(rows) uniquely in the table. We also use keys to set u
6 min read
Mapping from ER Model to Relational ModelConverting an Entity-Relationship (ER) diagram to a Relational Model is a crucial step in database design. The ER model represents the conceptual structure of a database, while the Relational Model is a physical representation that can be directly implemented using a Relational Database Management S
7 min read
Strategies for Schema design in DBMSThere are various strategies that are considered while designing a schema. Most of these strategies follow an incremental approach that is, they must start with some schema constructs derived from the requirements and then they incrementally modify, refine or build on them. What is Schema Design?Sch
6 min read
Relational Model
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Relational Algebra
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Functional Dependencies & Normalization
Attribute Closure in DBMSFunctional dependency and attribute closure are essential for maintaining data integrity and building effective, organized and normalized databases. Attribute closure of an attribute set can be defined as set of attributes which can be functionally determined from it.How to find attribute closure of
4 min read
Armstrong's Axioms in Functional Dependency in DBMSArmstrong's Axioms refer to a set of inference rules, introduced by William W. Armstrong, that are used to test the logical implication of functional dependencies. Given a set of functional dependencies F, the closure of F (denoted as F+) is the set of all functional dependencies logically implied b
4 min read
Canonical Cover of Functional Dependencies in DBMSManaging a large set of functional dependencies can result in unnecessary computational overhead. This is where the canonical cover becomes useful. A canonical cover is a set of functional dependencies that is equivalent to a given set of functional dependencies but is minimal in terms of the number
7 min read
Normal Forms in DBMSIn the world of database management, Normal Forms are important for ensuring that data is structured logically, reducing redundancy, and maintaining data integrity. When working with databases, especially relational databases, it is critical to follow normalization techniques that help to eliminate
7 min read
The Problem of Redundancy in DatabaseRedundancy means having multiple copies of the same data in the database. This problem arises when a database is not normalized. Suppose a table of student details attributes is: student ID, student name, college name, college rank, and course opted. Student_ID Name Contact College Course Rank 100Hi
6 min read
Lossless Join and Dependency Preserving DecompositionDecomposition of a relation is done when a relation in a relational model is not in appropriate normal form. Relation R is decomposed into two or more relations if decomposition is lossless join as well as dependency preserving. Lossless Join DecompositionIf we decompose a relation R into relations
4 min read
Denormalization in DatabasesDenormalization is a database optimization technique in which we add redundant data to one or more tables. This can help us avoid costly joins in a relational database. Note that denormalization does not mean 'reversing normalization' or 'not to normalize'. It is an optimization technique that is ap
4 min read
Transactions & Concurrency Control
ACID Properties in DBMSIn the world of DBMS, transactions are fundamental operations that allow us to modify and retrieve data. However, to ensure the integrity of a database, it is important that these transactions are executed in a way that maintains consistency, correctness, and reliability. This is where the ACID prop
6 min read
Types of Schedules in DBMSScheduling is the process of determining the order in which transactions are executed. When multiple transactions run concurrently, scheduling ensures that operations are executed in a way that prevents conflicts or overlaps between them.There are several types of schedules, all of them are depicted
6 min read
Recoverability in DBMSRecoverability is a critical feature of database systems. It ensures that after a failure, the database returns to a consistent state by permanently saving committed transactions and rolling back uncommitted ones. It relies on transaction logs to undo or redo changes as needed. This is crucial in mu
6 min read
Implementation of Locking in DBMSLocking protocols are used in database management systems as a means of concurrency control. Multiple transactions may request a lock on a data item simultaneously. Hence, we require a mechanism to manage the locking requests made by transactions. Such a mechanism is called a Lock Manager. It relies
5 min read
Deadlock in DBMSA deadlock occurs in a multi-user database environment when two or more transactions block each other indefinitely by each holding a resource the other needs. This results in a cycle of dependencies (circular wait) where no transaction can proceed.For Example: Consider the image belowDeadlock in DBM
4 min read
Starvation in DBMSStarvation in DBMS is a problem that happens when some processes are unable to get the resources they need because other processes keep getting priority. This can happen in situations like locking or scheduling, where some processes keep getting the resources first, leaving others waiting indefinite
8 min read
Advanced DBMS
Indexing in DatabasesIndexing in DBMS is used to speed up data retrieval by minimizing disk scans. Instead of searching through all rows, the DBMS uses index structures to quickly locate data using key values.When an index is created, it stores sorted key values and pointers to actual data rows. This reduces the number
6 min read
Introduction of B TreeA B-Tree is a specialized m-way tree designed to optimize data access, especially on disk-based storage systems. In a B-Tree of order m, each node can have up to m children and m-1 keys, allowing it to efficiently manage large datasets.The value of m is decided based on disk block and key sizes.One
8 min read
Introduction of B+ TreeA B+ Tree is an advanced data structure used in database systems and file systems to maintain sorted data for fast retrieval, especially from disk. It is an extended version of the B Tree, where all actual data is stored only in the leaf nodes, while internal nodes contain only keys for navigation.C
5 min read
Bitmap Indexing in DBMSBitmap Indexing is a powerful data indexing technique used in Database Management Systems (DBMS) to speed up queries- especially those involving large datasets and columns with only a few unique values (called low-cardinality columns).In a database table, some columns only contain a few different va
3 min read
Inverted IndexAn Inverted Index is a data structure used in information retrieval systems to efficiently retrieve documents or web pages containing a specific term or set of terms. In an inverted index, the index is organized by terms (words), and each term points to a list of documents or web pages that contain
7 min read
SQL Queries on Clustered and Non-Clustered IndexesIndexes in SQL play a pivotal role in enhancing database performance by enabling efficient data retrieval without scanning the entire table. The two primary types of indexes Clustered Index and Non-Clustered Index serve distinct purposes in optimizing query performance. In this article, we will expl
7 min read
File Organization in DBMSFile organization in DBMS refers to the method of storing data records in a file so they can be accessed efficiently. It determines how data is arranged, stored, and retrieved from physical storage.The Objective of File OrganizationIt helps in the faster selection of records i.e. it makes the proces
5 min read
DBMS Practice