C++ Program To Merge K Sorted Linked Lists - Set 1
Last Updated :
15 Feb, 2023
Given K sorted linked lists of size N each, merge them and print the sorted output.
Examples:
Input: k = 3, n = 4
list1 = 1->3->5->7->NULL
list2 = 2->4->6->8->NULL
list3 = 0->9->10->11->NULL
Output: 0->1->2->3->4->5->6->7->8->9->10->11
Merged lists in a sorted order
where every element is greater
than the previous element.
Input: k = 3, n = 3
list1 = 1->3->7->NULL
list2 = 2->4->8->NULL
list3 = 9->10->11->NULL
Output: 1->2->3->4->7->8->9->10->11
Merged lists in a sorted order
where every element is greater
than the previous element.
Method 1 (Simple):
Approach:
A Simple Solution is to initialize the result as the first list. Now traverse all lists starting from the second list. Insert every node of the currently traversed list into result in a sorted way.
C++
// C++ program to merge k sorted
// linked lists of size n each
#include <bits/stdc++.h>
using namespace std;
// A Linked List node
struct Node
{
int data;
Node* next;
};
/* Function to print nodes in a
given linked list */
void printList(Node* node)
{
while (node != NULL)
{
printf("%d ", node->data);
node = node->next;
}
}
// The main function that takes an
// array of lists arr[0..last] and
// generates the sorted output
Node* mergeKLists(Node* arr[],
int last)
{
// Traverse from second list to last
for (int i = 1; i <= last; i++)
{
while (true)
{
// Head of both the lists,
// 0 and ith list.
Node *head_0 = arr[0],
*head_i = arr[i];
// Break if list ended
if (head_i == NULL)
break;
// Smaller than first element
if (head_0->data >= head_i->data)
{
arr[i] = head_i->next;
head_i->next = head_0;
arr[0] = head_i;
}
else
// Traverse the first list
while (head_0->next != NULL)
{
// Smaller than next element
if (head_0->next->data >=
head_i->data)
{
arr[i] = head_i->next;
head_i->next = head_0->next;
head_0->next = head_i;
break;
}
// go to next node
head_0 = head_0->next;
// if last node
if (head_0->next == NULL)
{
arr[i] = head_i->next;
head_i->next = NULL;
head_0->next = head_i;
head_0->next->next = NULL;
break;
}
}
}
}
return arr[0];
}
// Utility function to create
// a new node.
Node* newNode(int data)
{
struct Node* temp = new Node;
temp->data = data;
temp->next = NULL;
return temp;
}
// Driver code
int main()
{
// Number of linked lists
int k = 3;
// Number of elements in each list
int n = 4;
// an array of pointers storing the
// head nodes of the linked lists
Node* arr[k];
arr[0] = newNode(1);
arr[0]->next = newNode(3);
arr[0]->next->next = newNode(5);
arr[0]->next->next->next = newNode(7);
arr[1] = newNode(2);
arr[1]->next = newNode(4);
arr[1]->next->next = newNode(6);
arr[1]->next->next->next = newNode(8);
arr[2] = newNode(0);
arr[2]->next = newNode(9);
arr[2]->next->next = newNode(10);
arr[2]->next->next->next = newNode(11);
// Merge all lists
Node* head = mergeKLists(arr, k - 1);
printList(head);
return 0;
}
Output:
0 1 2 3 4 5 6 7 8 9 10 11
Complexity Analysis:
- Time complexity: O(nk2)
- Auxiliary Space: O(1).
As no extra space is required.
Method 2: Min Heap.
A Better solution is to use Min Heap-based solution which is discussed here for arrays. The time complexity of this solution would be O(nk Log k)
Method 3: Divide and Conquer.
In this post, Divide and Conquer approach is discussed. This approach doesn't require extra space for heap and works in O(nk Log k)
It is known that merging of two linked lists can be done in O(n) time and O(n) space.
- The idea is to pair up K lists and merge each pair in linear time using O(n) space.
- After the first cycle, K/2 lists are left each of size 2*N. After the second cycle, K/4 lists are left each of size 4*N and so on.
- Repeat the procedure until we have only one list left.
Below is the implementation of the above idea.
C++
// C++ program to merge k sorted
// linked lists of size n each
#include <bits/stdc++.h>
using namespace std;
// A Linked List node
struct Node
{
int data;
Node* next;
};
/* Function to print nodes in a
given linked list */
void printList(Node* node)
{
while (node != NULL)
{
printf("%d ", node->data);
node = node->next;
}
}
/* Takes two lists sorted in increasing order,
and merge their nodes together to make one
big sorted list. Below function takes O(n)
extra space for recursive calls, */
Node* SortedMerge(Node* a, Node* b)
{
Node* result = NULL;
// Base cases
if (a == NULL)
return (b);
else if (b == NULL)
return (a);
// Pick either a or b, and recur
if (a->data <= b->data)
{
result = a;
result->next = SortedMerge(a->next, b);
}
else
{
result = b;
result->next = SortedMerge(a, b->next);
}
return result;
}
// The main function that takes an
// array of lists arr[0..last] and
// generates the sorted output
Node* mergeKLists(Node* arr[], int last)
{
// Repeat until only one list is left
while (last != 0)
{
int i = 0, j = last;
// (i, j) forms a pair
while (i < j)
{
// merge List i with List j and
// store merged list in List i
arr[i] = SortedMerge(arr[i], arr[j]);
// consider next pair
i++, j--;
// If all pairs are merged, update
// last
if (i >= j)
last = j;
}
}
return arr[0];
}
// Utility function to create
// a new node.
Node* newNode(int data)
{
struct Node* temp = new Node;
temp->data = data;
temp->next = NULL;
return temp;
}
// Driver code
int main()
{
// Number of linked lists
int k = 3;
// Number of elements in
// each list
int n = 4;
// An array of pointers storing
// the head nodes of the linked lists
Node* arr[k];
arr[0] = newNode(1);
arr[0]->next = newNode(3);
arr[0]->next->next = newNode(5);
arr[0]->next->next->next = newNode(7);
arr[1] = newNode(2);
arr[1]->next = newNode(4);
arr[1]->next->next = newNode(6);
arr[1]->next->next->next = newNode(8);
arr[2] = newNode(0);
arr[2]->next = newNode(9);
arr[2]->next->next = newNode(10);
arr[2]->next->next->next = newNode(11);
// Merge all lists
Node* head = mergeKLists(arr, k - 1);
printList(head);
return 0;
}
Output:
0 1 2 3 4 5 6 7 8 9 10 11
Complexity Analysis:
Assuming N(n*k) is the total number of nodes, n is the size of each linked list, and k is the total number of linked lists.
- Time Complexity: O(N*log k) or O(n*k*log k)
As outer while loop in function mergeKLists() runs log k times and every time it processes n*k elements. - Auxiliary Space: O(N) or O(n*k)
Because recursion is used in SortedMerge() and to merge the final 2 linked lists of size N/2, N recursive calls will be made.
Please refer complete article on Merge K sorted linked lists | Set 1 for more details!
Similar Reads
C++ Program To Merge K Sorted Linked Lists Using Min Heap - Set 2 Given k linked lists each of size n and each list is sorted in non-decreasing order, merge them into a single sorted (non-decreasing order) linked list and print the sorted linked list as output.Examples:Â Input: k = 3, n = 4 list1 = 1->3->5->7->NULL list2 = 2->4->6->8->NULL list3 = 0->9->10->11->NU
5 min read
C++ Program To Merge Two Sorted Lists (In-Place) Write a C++ program to merge two sorted linked lists into a single sorted linked list in place (i.e. without using extra space).Examples:Input: List1: 5 -> 7 -> 9, list2: 4 -> 6 -> 8 Output: 4->5->6->7->8->9Input: List1: 1 -> 3 -> 5 -> 7, List2: 2 -> 4Output: 1
3 min read
C++ Program For Merge Sort For Doubly Linked List Given a doubly linked list, write a function to sort the doubly linked list in increasing order using merge sort.For example, the following doubly linked list should be changed to 24810 Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Merge sort for singly linked l
3 min read
Merge two unsorted linked lists to get a sorted list Given two unsorted Linked List, the task is to merge them to get a sorted singly linked list.Examples: Input: List 1 = 3 -> 1 -> 5, List 2 = 6-> 2 -> 4 Output: 1 -> 2 -> 3 -> 4 -> 5 -> 6 Input: List 1 = 4 -> 7 -> 5, List 2 = 2-> 1 -> 8 -> 1 Output: 1 -> 1
14 min read
C++ Program to Merge 3 Sorted Arrays Given 3 arrays (A, B, C) which are sorted in ascending order, we are required to merge them together in ascending order and output the array D. Examples: Input : A = [1, 2, 3, 4, 5] B = [2, 3, 4] C = [4, 5, 6, 7] Output : D = [1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 7] Input : A = [1, 2, 3, 5] B = [6, 7, 8
9 min read