C++ Program For Merge Sort For Doubly Linked List Last Updated : 09 Dec, 2022 Comments Improve Suggest changes Like Article Like Report Given a doubly linked list, write a function to sort the doubly linked list in increasing order using merge sort.For example, the following doubly linked list should be changed to 24810 Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Merge sort for singly linked list is already discussed. The important change here is to modify the previous pointers also when merging two lists. Below is the implementation of merge sort for doubly linked list. C++ // C++ program for merge sort on doubly // linked list #include <bits/stdc++.h> using namespace std; class Node { public: int data; Node *next, *prev; }; Node *split(Node *head); // Function to merge two linked lists Node *merge(Node *first, Node *second) { // If first linked list is empty if (!first) return second; // If second linked list is empty if (!second) return first; // Pick the smaller value if (first->data < second->data) { first->next = merge(first->next, second); first->next->prev = first; first->prev = NULL; return first; } else { second->next = merge(first,second->next); second->next->prev = second; second->prev = NULL; return second; } } // Function to do merge sort Node *mergeSort(Node *head) { if (!head || !head->next) return head; Node *second = split(head); // Recur for left and right halves head = mergeSort(head); second = mergeSort(second); // Merge the two sorted halves return merge(head,second); } // A utility function to insert a new node // at the beginning of doubly linked list void insert(Node **head, int data) { Node *temp = new Node(); temp->data = data; temp->next = temp->prev = NULL; if (!(*head)) (*head) = temp; else { temp->next = *head; (*head)->prev = temp; (*head) = temp; } } // A utility function to print a doubly // linked list in both forward and // backward directions void print(Node *head) { Node *temp = head; cout << "Forward Traversal using next pointer"; while (head) { cout << head->data << " "; temp = head; head = head->next; } cout << "Backward Traversal using prev pointer"; while (temp) { cout << temp->data << " "; temp = temp->prev; } } // Utility function to swap two integers void swap(int *A, int *B) { int temp = *A; *A = *B; *B = temp; } // Split a doubly linked list (DLL) into // 2 DLLs of half sizes Node *split(Node *head) { Node *fast = head,*slow = head; while (fast->next && fast->next->next) { fast = fast->next->next; slow = slow->next; } Node *temp = slow->next; slow->next = NULL; return temp; } // Driver program int main(void) { Node *head = NULL; insert(&head, 5); insert(&head, 20); insert(&head, 4); insert(&head, 3); insert(&head, 30); insert(&head, 10); head = mergeSort(head); cout << "Linked List after sorting"; print(head); return 0; } // This is code is contributed by rathbhupendra Output: Linked List after sorting Forward Traversal using next pointer 3 4 5 10 20 30 Backward Traversal using prev pointer 30 20 10 5 4 3 Time Complexity: Time complexity of the above implementation is same as time complexity of MergeSort for arrays. It takes Θ(nLogn) time. Space Complexity:O(1). We are only using constant amount of extra space.You may also like to see QuickSort for doubly linked list Please refer complete article on Merge Sort for Doubly Linked List for more details! Comment More infoAdvertise with us Next Article C++ Program For Merge Sort For Doubly Linked List kartik Follow Improve Article Tags : Linked List Sorting C++ Programs DSA Amazon Merge Sort doubly linked list Linked-List-Sorting +4 More Practice Tags : AmazonLinked ListMerge SortSorting Similar Reads DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on 7 min read Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s 12 min read Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge 14 min read Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir 8 min read Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st 2 min read Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta 15+ min read Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc 15 min read Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T 9 min read Dijkstra's Algorithm to find Shortest Paths from a Source to all Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example 12 min read Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an 8 min read Like