Count subarrays with same even and odd elements
Last Updated :
20 Jan, 2023
Given an array of N integers, count number of even-odd subarrays. An even - odd subarray is a subarray that contains the same number of even as well as odd integers.
Examples :
Input : arr[] = {2, 5, 7, 8}
Output : 3
Explanation : There are total 3 even-odd subarrays.
1) {2, 5}
2) {7, 8}
3) {2, 5, 7, 8}
Input : arr[] = {3, 4, 6, 8, 1, 10}
Output : 3
Explanation : In this case, 3 even-odd subarrays are:
1) {3, 4}
2) {8, 1}
3) {1, 10}
This problem is mainly a variation of count subarrays with equal number of 0s and 1s.
A naive approach would be to check for all possible subarrays using two loops, whether they are even-odd subarrays or not. This approach will take O(N^2) time.
An Efficient approach solves the problem in O(N) time and it is based on following ideas:
- Even-odd subarrays will always be of even length.
- Maintaining track of the difference between the frequency of even and odd integers.
- Hashing of this difference of frequencies is useful in finding number of even-odd subarrays.
The basic idea is to use the difference between the frequency of odd and even numbers to obtain an optimal solution.
We will maintain two integer hash arrays for the positive and negative value of the difference.
-> Example to understand in better way :
-> Consider difference = freq(odd) - freq(even)
-> To calculate this difference, increment the value of 'difference' when there is
an odd integer and decrement it when there is an even integer. (initially, difference = 0)
arr[] = {3, 4, 6, 8, 1, 10}
index 0 1 2 3 4 5 6
array 3 4 6 8 1 10
difference 0 1 0 -1 -2 -1 -2
-> Observe that whenever a value 'k' repeats in the 'difference' array, there exists an
even-odd subarray for each previous occurrence of that value i.e. subarray exists from
index i + 1 to j where difference[i] = k and difference[j] = k.
-> Value '0' is repeated in 'difference' array at index 2 and hence subarray exists for
(0, 2] indexes. Similarly, for repetition of values '-1' (at indexes 3 and 5) and '-2' (at
indexes 4 and 6), subarray exists for (3, 5] and (4, 6] indexes.
Below is the implementation of the O(N) solution described above.
C++
/*C++ program to find total number of
even-odd subarrays present in given array*/
#include <bits/stdc++.h>
using namespace std;
// function that returns the count of subarrays that
// contain equal number of odd as well as even numbers
int countSubarrays(int arr[], int n)
{
// initialize difference and answer with 0
int difference = 0;
int ans = 0;
// create two auxiliary hash arrays to count frequency
// of difference, one array for non-negative difference
// and other array for negative difference. Size of these
// two auxiliary arrays is 'n+1' because difference can
// reach maximum value 'n' as well as minimum value '-n'
int hash_positive[n + 1], hash_negative[n + 1];
// initialize these auxiliary arrays with 0
fill_n(hash_positive, n + 1, 0);
fill_n(hash_negative, n + 1, 0);
// since the difference is initially 0, we have to
// initialize hash_positive[0] with 1
hash_positive[0] = 1;
// for loop to iterate through whole
// array (zero-based indexing is used)
for (int i = 0; i < n ; i++)
{
// incrementing or decrementing difference based on
// arr[i] being even or odd, check if arr[i] is odd
if (arr[i] & 1 == 1)
difference++;
else
difference--;
// adding hash value of 'difference' to our answer
// as all the previous occurrences of the same
// difference value will make even-odd subarray
// ending at index 'i'. After that, we will increment
// hash array for that 'difference' value for
// its occurrence at index 'i'. if difference is
// negative then use hash_negative
if (difference < 0)
{
ans += hash_negative[-difference];
hash_negative[-difference]++;
}
// else use hash_positive
else
{
ans += hash_positive[difference];
hash_positive[difference]++;
}
}
// return total number of even-odd subarrays
return ans;
}
// Driver code
int main()
{
int arr[] = {3, 4, 6, 8, 1, 10, 5, 7};
int n = sizeof(arr) / sizeof(arr[0]);
// Printing total number of even-odd subarrays
cout << "Total Number of Even-Odd subarrays"
" are " << countSubarrays(arr,n);
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129)
C
/*C program to find total number of
even-odd subarrays present in given array*/
#include <stdio.h>
// function that returns the count of subarrays that
// contain equal number of odd as well as even numbers
int countSubarrays(int arr[], int n)
{
// initialize difference and answer with 0
int difference = 0;
int ans = 0;
// create two auxiliary hash arrays to count frequency
// of difference, one array for non-negative difference
// and other array for negative difference. Size of
// these two auxiliary arrays is 'n+1' because
// difference can reach maximum value 'n' as well as
// minimum value '-n'
int hash_positive[n + 1], hash_negative[n + 1];
// initialize these auxiliary arrays with 0
for (int i = 0; i < n + 1; i++)
hash_positive[i] = 0;
for (int i = 0; i < n + 1; i++)
hash_negative[i] = 0;
// since the difference is initially 0, we have to
// initialize hash_positive[0] with 1
hash_positive[0] = 1;
// for loop to iterate through whole
// array (zero-based indexing is used)
for (int i = 0; i < n; i++) {
// incrementing or decrementing difference based on
// arr[i] being even or odd, check if arr[i] is odd
if (arr[i] & 1 == 1)
difference++;
else
difference--;
// adding hash value of 'difference' to our answer
// as all the previous occurrences of the same
// difference value will make even-odd subarray
// ending at index 'i'. After that, we will
// increment hash array for that 'difference' value
// for its occurrence at index 'i'. if difference is
// negative then use hash_negative
if (difference < 0) {
ans += hash_negative[-difference];
hash_negative[-difference]++;
}
// else use hash_positive
else {
ans += hash_positive[difference];
hash_positive[difference]++;
}
}
// return total number of even-odd subarrays
return ans;
}
// Driver code
int main()
{
int arr[] = { 3, 4, 6, 8, 1, 10, 5, 7 };
int n = sizeof(arr) / sizeof(arr[0]);
// Printing total number of even-odd subarrays
printf("Total Number of Even-Odd subarrays are %d ",
countSubarrays(arr, n));
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129)
Java
// Java program to find total number of even-odd subarrays
// present in given array
class GFG {
// function that returns the count of subarrays that
// contain equal number of odd as well as even numbers
static int countSubarrays(int[] arr, int n)
{
// initialize difference and answer with 0
int difference = 0;
int ans = 0;
// create two auxiliary hash arrays to count
// frequency of difference, one array for
// non-negative difference and other array for
// negative difference. Size of these two auxiliary
// arrays is 'n+1' because difference can reach
// maximum value 'n' as well as minimum value '-n'
// initialize these auxiliary arrays with 0
int[] hash_positive = new int[n + 1];
int[] hash_negative = new int[n + 1];
// since the difference is initially 0, we have to
// initialize hash_positive[0] with 1
hash_positive[0] = 1;
// for loop to iterate through whole array
// (zero-based indexing is used)
for (int i = 0; i < n; i++) {
// incrementing or decrementing difference based
// on arr[i] being even or odd, check if arr[i]
// is odd
if ((arr[i] & 1) == 1)
difference++;
else
difference--;
// adding hash value of 'difference' to our
// answer as all the previous occurrences of the
// same difference value will make even-odd
// subarray ending at index 'i'. After that, we
// will increment hash array for that
// 'difference' value for its occurrence at
// index 'i'. if difference is negative then use
// hash_negative
if (difference < 0) {
ans += hash_negative[-difference];
hash_negative[-difference]++;
} // else use hash_positive
else {
ans += hash_positive[difference];
hash_positive[difference]++;
}
}
// return total number of even-odd subarrays
return ans;
}
// Driver code
public static void main(String[] args)
{
int[] arr = new int[] { 3, 4, 6, 8, 1, 10, 5, 7 };
int n = arr.length;
// Printing total number of even-odd subarrays
System.out.println(
"Total Number of Even-Odd subarrays are "
+ countSubarrays(arr, n));
}
}
// This code is contributed by Aditya Kumar (adityakumar129)
Python3
# Python3 program to find total
# number of even-odd subarrays
# present in given array
# function that returns the count
# of subarrays that contain equal
# number of odd as well as even numbers
def countSubarrays(arr, n):
# initialize difference and
# answer with 0
difference = 0
ans = 0
# create two auxiliary hash
# arrays to count frequency
# of difference, one array
# for non-negative difference
# and other array for negative
# difference. Size of these two
# auxiliary arrays is 'n+1'
# because difference can reach
# maximum value 'n' as well as
# minimum value '-n'
hash_positive = [0] * (n + 1)
hash_negative = [0] * (n + 1)
# since the difference is
# initially 0, we have to
# initialize hash_positive[0] with 1
hash_positive[0] = 1
# for loop to iterate through
# whole array (zero-based
# indexing is used)
for i in range(n):
# incrementing or decrementing
# difference based on arr[i]
# being even or odd, check if
# arr[i] is odd
if (arr[i] & 1 == 1):
difference = difference + 1
else:
difference = difference - 1
# adding hash value of 'difference'
# to our answer as all the previous
# occurrences of the same difference
# value will make even-odd subarray
# ending at index 'i'. After that,
# we will increment hash array for
# that 'difference' value for
# its occurrence at index 'i'. if
# difference is negative then use
# hash_negative
if (difference < 0):
ans += hash_negative[-difference]
hash_negative[-difference] = hash_negative[-difference] + 1
# else use hash_positive
else:
ans += hash_positive[difference]
hash_positive[difference] = hash_positive[difference] + 1
# return total number of
# even-odd subarrays
return ans
# Driver code
arr = [3, 4, 6, 8, 1, 10, 5, 7]
n = len(arr)
# Printing total number
# of even-odd subarrays
print("Total Number of Even-Odd subarrays are " +
str(countSubarrays(arr, n)))
# This code is contributed
# by Yatin Gupta
C#
// C# program to find total
// number of even-odd subarrays
// present in given array
using System;
class GFG
{
// function that returns the
// count of subarrays that
// contain equal number of
// odd as well as even numbers
static int countSubarrays(int []arr,
int n)
{
// initialize difference
// and answer with 0
int difference = 0;
int ans = 0;
// create two auxiliary hash
// arrays to count frequency
// of difference, one array
// for non-negative difference
// and other array for negative
// difference. Size of these
// two auxiliary arrays is 'n+1'
// because difference can
// reach maximum value 'n' as
// well as minimum value '-n'
int []hash_positive = new int[n + 1];
int []hash_negative = new int[n + 1];
// initialize these
// auxiliary arrays with 0
Array.Clear(hash_positive, 0, n + 1);
Array.Clear(hash_negative, 0, n + 1);
// since the difference is
// initially 0, we have to
// initialize hash_positive[0] with 1
hash_positive[0] = 1;
// for loop to iterate
// through whole array
// (zero-based indexing is used)
for (int i = 0; i < n ; i++)
{
// incrementing or decrementing
// difference based on
// arr[i] being even or odd,
// check if arr[i] is odd
if ((arr[i] & 1) == 1)
difference++;
else
difference--;
// adding hash value of 'difference'
// to our answer as all the previous
// occurrences of the same difference
// value will make even-odd subarray
// ending at index 'i'. After that,
// we will increment hash array for
// that 'difference' value for its
// occurrence at index 'i'. if
// difference is negative then use
// hash_negative
if (difference < 0)
{
ans += hash_negative[-difference];
hash_negative[-difference]++;
}
// else use hash_positive
else
{
ans += hash_positive[difference];
hash_positive[difference]++;
}
}
// return total number
// of even-odd subarrays
return ans;
}
// Driver code
static void Main()
{
int []arr = new int[]{3, 4, 6, 8,
1, 10, 5, 7};
int n = arr.Length;
// Printing total number
// of even-odd subarrays
Console.Write("Total Number of Even-Odd" +
" subarrays are " +
countSubarrays(arr,n));
}
}
// This code is contributed by
// Manish Shaw(manishshaw1)
PHP
<?php
// PHP program to find total number of
// even-odd subarrays present in given array
// function that returns the count of subarrays
// that contain equal number of odd as well
// as even numbers
function countSubarrays(&$arr, $n)
{
// initialize difference and
// answer with 0
$difference = 0;
$ans = 0;
// create two auxiliary hash arrays to count
// frequency of difference, one array for
// non-negative difference and other array
// for negative difference. Size of these
// two auxiliary arrays is 'n+1' because
// difference can reach maximum value 'n'
// as well as minimum value '-n'
$hash_positive = array_fill(0, $n + 1, NULL);
$hash_negative = array_fill(0, $n + 1, NULL);
// since the difference is initially 0, we
// have to initialize hash_positive[0] with 1
$hash_positive[0] = 1;
// for loop to iterate through whole
// array (zero-based indexing is used)
for ($i = 0; $i < $n ; $i++)
{
// incrementing or decrementing difference
// based on arr[i] being even or odd, check
// if arr[i] is odd
if ($arr[$i] & 1 == 1)
$difference++;
else
$difference--;
// adding hash value of 'difference' to our
// answer as all the previous occurrences of
// the same difference value will make even-odd
// subarray ending at index 'i'. After that, we
// will increment hash array for that 'difference'
// value for its occurrence at index 'i'. if
// difference is negative then use hash_negative
if ($difference < 0)
{
$ans += $hash_negative[-$difference];
$hash_negative[-$difference]++;
}
// else use hash_positive
else
{
$ans += $hash_positive[$difference];
$hash_positive[$difference]++;
}
}
// return total number of even-odd
// subarrays
return $ans;
}
// Driver code
$arr = array(3, 4, 6, 8, 1, 10, 5, 7);
$n = sizeof($arr);
// Printing total number of even-odd
// subarrays
echo "Total Number of Even-Odd subarrays".
" are " . countSubarrays($arr, $n);
// This code is contributed by ita_c
?>
JavaScript
<script>
// Javascript program to find total
// number of even-odd subarrays
// present in given array
// function that returns the
// count of subarrays that
// contain equal number of
// odd as well as even numbers
function countSubarrays(arr, n)
{
// initialize difference
// and answer with 0
let difference = 0;
let ans = 0;
// create two auxiliary hash
// arrays to count frequency
// of difference, one array
// for non-negative difference
// and other array for negative
// difference. Size of these
// two auxiliary arrays is 'n+1'
// because difference can
// reach maximum value 'n' as
// well as minimum value '-n'
// initialize these
// auxiliary arrays with 0
let hash_positive = new Array(n + 1);
let hash_negative = new Array(n + 1);
for(let i=0;i<n+1;i++)
{
hash_positive[i] = 0;
hash_negative[i] = 0;
}
// since the difference is
// initially 0, we have to
// initialize hash_positive[0] with 1
hash_positive[0] = 1;
// for loop to iterate
// through whole array
// (zero-based indexing is used)
for (let i = 0; i < n; i++)
{
// incrementing or decrementing
// difference based on
// arr[i] being even or odd,
// check if arr[i] is odd
if ((arr[i] & 1) == 1)
{
difference++;
}
else
{
difference--;
}
// adding hash value of 'difference'
// to our answer as all the previous
// occurrences of the same difference
// value will make even-odd subarray
// ending at index 'i'. After that,
// we will increment hash array for
// that 'difference' value for its
// occurrence at index 'i'. if
// difference is negative then use
// hash_negative
if (difference < 0)
{
ans += hash_negative[-difference];
hash_negative[-difference]++;
}
// else use hash_positive
else
{
ans += hash_positive[difference];
hash_positive[difference]++;
}
}
// return total number
// of even-odd subarrays
return ans;
}
// Driver code
let arr = [3, 4, 6, 8,
1, 10, 5, 7];
let n = arr.length;
// Printing total number
// of even-odd subarrays
document.write("Total Number of Even-Odd"
+ " subarrays are "
+ countSubarrays(arr, n));
// This code is contributed by avanitrachhadiya2155
</script>
OutputTotal Number of Even-Odd subarrays are 7
Complexity Analysis:
- Time Complexity: O(N), where N is the number of integers.
- Auxiliary Space: O(2N), where N is the number of integers.
Another approach:- This approach is much simpler and easy to understand. It can be solved easily by using the same concept of
Count subarrays with equal numbers of 1’s and 0’s. Change the odd elements to -1 and even elements to 1. And now count the ways to find sum=0;
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
// function to count the subarrays having equal number of
// even and odd
long long int countSubarrays(int arr[], int n)
{
long long int k = 0, currsum = 0, count = 0;
unordered_map<int, int> map;
for (int i = 0; i < n; i++) {
if (arr[i] % 2 == 0)
arr[i] = 1;
else if (arr[i] % 2 != 0)
arr[i] = -1;
currsum += arr[i];
if (currsum == k)
count++;
if (map.find(currsum - k) != map.end()) {
count += map[currsum - k];
}
map[currsum]++;
}
// return total number of even-odd subarrays
return count;
}
// Driver code
int main()
{
int arr[] = { 3, 4, 6, 8, 1, 10, 5, 7 };
int n = sizeof(arr) / sizeof(arr[0]);
// Printing total number of even-odd subarrays
cout << "Total Number of Even-Odd subarrays"
" are "
<< countSubarrays(arr, n);
}
// this code is contributed by naveen shah
Java
/*package whatever //do not write package name here */
import java.util.*;
class GFG {
// function to count the subarrays having equal number of
// even and odd
static long countSubarrays(int arr[], int n)
{
long k = 0, currsum = 0, count = 0;
HashMap<Long, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++) {
if (arr[i] % 2 == 0)
arr[i] = 1;
else if (arr[i] % 2 != 0)
arr[i] = -1;
currsum += arr[i];
if (currsum == k)
count++;
if (map.containsKey(currsum - k)) {
count += map.get(currsum - k);
}
map.put(currsum,map.getOrDefault(currsum,0)+1);
}
// return total number of even-odd subarrays
return count;
}
public static void main (String[] args) {
int arr[] = { 3, 4, 6, 8, 1, 10, 5, 7 };
int n = arr.length;
// Printing total number of even-odd subarrays
System.out.println("Total Number of Even-Odd subarrays are " + countSubarrays(arr, n));
}
}
Python3
# function to count the subarrays having equal number of
# even and odd
def countSubarrays(arr, n):
k = 0
currsum = 0
count = 0
map = {}
for i in range(n):
if arr[i] % 2 == 0:
arr[i] = 1
else:
arr[i] = -1
currsum += arr[i]
if currsum == k:
count += 1
if currsum - k in map:
count += map[currsum - k]
if currsum not in map:
map[currsum] = 1
else:
map[currsum] += 1
# return total number of even-odd subarrays
return count
arr = [3, 4, 6, 8, 1, 10, 5, 7]
n = len(arr)
# Printing total number of even-odd subarrays
print("Total Number of Even-Odd subarrays are", countSubarrays(arr, n))
# this code is contributed by akashish__
C#
// Include namespace system
using System;
using System.Collections.Generic;
using System.Collections;
public class GFG
{
// function to count the subarrays having equal number of
// even and odd
public static long countSubarrays(int[] arr, int n)
{
var k = 0;
var currsum = 0;
var count = 0;
var map = new Dictionary<long, int>();
for (int i = 0; i < n; i++)
{
if (arr[i] % 2 == 0)
{
arr[i] = 1;
}
else if (arr[i] % 2 != 0)
{
arr[i] = -1;
}
currsum += arr[i];
if (currsum == k)
{
count++;
}
if (map.ContainsKey(currsum - k))
{
count += map[currsum - k];
}
map[currsum] = (map.ContainsKey(currsum) ? map[currsum] : 0) + 1;
}
// return total number of even-odd subarrays
return count;
}
public static void Main(String[] args)
{
int[] arr = {3, 4, 6, 8, 1, 10, 5, 7};
var n = arr.Length;
// Printing total number of even-odd subarrays
Console.WriteLine("Total Number of Even-Odd subarrays are " + GFG.countSubarrays(arr, n).ToString());
}
}
// This code is contributed by aadityaburujwale.
JavaScript
// JavaScript Code implementation
// function to count the subarrays having equal number of
// even and odd
function countSubarrays(arr, n){
var k = 0, currsum = 0, count = 0;
var map = new Map();
for(let i=0;i<n;i++){
if(arr[i]%2==0){
arr[i] = 1;
}
else if(arr[i]%2!=0){
arr[i] = -1;
}
currsum += arr[i];
if(currsum == k){
count++;
}
if(map.has(currsum-k)){
count += map.get(currsum-k);
}
var temp = (map.has(currsum) ? map.get(currsum) : 0) + 1;
map.set(currsum, temp);
}
// return total number of even-odd subarrays
return count;
}
var arr = [ 3, 4, 6, 8, 1, 10, 5, 7 ];
var n = arr.length;
// Printing total number of even-odd subarrays
console.log("Total Number of Even-Odd subarrays are " + countSubarrays(arr, n));
// This code is contributed by lokesh.
OutputTotal Number of Even-Odd subarrays are 7
Complexity Analysis:
- Time Complexity: O(N).
- Auxiliary Space: O(N).
Similar Reads
Count of subarrays which start and end with the same element
Given an array A of size N where the array elements contain values from 1 to N with duplicates, the task is to find the total number of subarrays that start and end with the same element. Examples: Input: A[] = {1, 2, 1, 5, 2} Output: 7 Explanation: Total 7 sub-array of the given array are {1}, {2},
10 min read
Longest subarray with all even or all odd elements
Given an array A[ ] of N non-negative integers, the task is to find the length of the longest sub-array such that all the elements in that sub-array are odd or even. Examples: Input: A[] = {2, 5, 7, 2, 4, 6, 8, 3}Output: 4Explanation: Sub-array {2, 4, 6, 8} of length 4 has all even elements Input: A
15+ min read
Count of subarrays of size K with elements having even frequencies
Given an array arr[] and an integer K, the task is to count subarrays of size K in which every element appears an even number of times in the subarray. Examples: Input: arr[] = {1, 4, 2, 10, 2, 10, 0, 20}, K = 4 Output: 1 Explanation: Only subarray {2, 10, 2, 10} satisfies the required condition. In
9 min read
Count subarrays with equal number of 1's and 0's
Given an array arr[] of size n containing 0 and 1 only. The problem is to count the subarrays having an equal number of 0's and 1's. Examples: Input: arr[] = {1, 0, 0, 1, 0, 1, 1}Output: 8Explanation: The index range for the 8 sub-arrays are: (0, 1), (2, 3), (0, 3), (3, 4), (4, 5)(2, 5), (0, 5), (1,
14 min read
Count subarrays having sum of elements at even and odd positions equal
Given an array arr[] of integers, the task is to find the total count of subarrays such that the sum of elements at even position and sum of elements at the odd positions are equal. Examples: Input: arr[] = {1, 2, 3, 4, 1}Output: 1Explanation: {3, 4, 1} is the only subarray in which sum of elements
6 min read
Count of odd and even parity elements in subarray using MO's algorithm
Given an array arr consisting of N elements and Q queries represented by L and R denoting a range, the task is to print the count of odd and even parity elements in the subarray [L, R]. Examples: Input: arr[]=[5, 2, 3, 1, 4, 8, 10] Q=2 1 3 0 4 Output: 2 1 3 2 Explanation: In query 1, odd parity elem
13 min read
Count non-overlapping Subarrays of size K with equal alternate elements
Given an array arr[] of length N, the task is to find the count of non-overlapping subarrays of size K such that the alternate elements are equal. Examples: Input: arr[] = {2, 4, 2, 7}, K = 3Output: 1Explanation: Given subarray {2, 4, 2} is a valid array because the elements in even position(index n
7 min read
Counting Subarrays with elements repeated twice after swapping
Given an array A[] of N integers, the task is to find the number of subarrays of A[], which is the repetition of its' elements twice, after having swapped the inside elements of this subarray any number of times. Note: Each element of the array is between 0 and 9 (inclusive of both). Examples: Input
6 min read
Subarrays with k odd numbers
Given an integer array arr[] of size n, and an integer k. Your task is to find the number of contiguous subarrays in the array arr[], which contains exactly k odd numbers.Examples : Input : arr = [2, 5, 6, 9], k = 2 Output: 2Explanation: There are 2 subarrays with 2 odds: [2, 5, 6, 9] and [5, 6, 9].
15+ min read
Balancing Odd-Even Index Sums with Subarray Negation
Given an array A[] of size N. The task is to check whether the sum of elements of A on the odd and even indexes is equal or not, where you are allowed to choose a subarray A[i, j] with 1 ⤠i ⤠j ⤠N and multiply â1 by all elements of the subarray. Examples: Input: N = 5, A[] = [1, 5, -2, 3, -1]Outpu
6 min read