Count set bits in an integer using Lookup Table
Last Updated :
03 Dec, 2024
Write an efficient program to count number of 1s in binary representation of an integer.
Examples:
Input : n = 6
Output : 2
Binary representation of 6 is 110 and has 2 set bits
Input : n = 13
Output : 3
Binary representation of 13 is 1101 and has 3 set bits
In the previous post we had seen different method that solved this problem in O(log n) time. In this post we solve in O(1) using lookup table. Here we assume that the size of INT is 32-bits. It’s hard to count all 32 bits in one go using lookup table (” because it’s infeasible to create lookup table of size 232-1 “). So we break 32 bits into 8 bits of chunks( How lookup table of size (28-1 ) index : 0-255 ).
LookUp Table
In lookup tale, we store count of set_bit of every
number that are in a range (0-255)
LookupTable[0] = 0 | binary 00000000 CountSetBits 0
LookupTable[1] = 1 | binary 00000001 CountSetBits 1
LookupTable[2] = 1 | binary 00000010 CountSetBits 1
LookupTable[3] = 2 | binary 00000011 CountSetBits 2
LookupTable[4] = 1 | binary 00000100 CountSetBits 1
and so...on upto LookupTable[255].
Let’s take an Example How lookup table work.
Let's number be : 354
in Binary : 0000000000000000000000101100010
Split it into 8 bits chunks :
In Binary : 00000000 | 00000000 | 00000001 | 01100010
In decimal : 0 0 1 98
Now Count Set_bits using LookupTable
LookupTable[0] = 0
LookupTable[1] = 1
LookupTable[98] = 3
so Total bits count : 4
Below is the code implementation of the above approach:
CPP
// C++ Program to count number of set bits
// using lookup table in O(1) time
#include <iostream>
using namespace std;
// Generate a lookup table for 32 bit integers
#define B2(n) n, n + 1, n + 1, n + 2
#define B4(n) B2(n), B2(n + 1), B2(n + 1), B2(n + 2)
#define B6(n) B4(n), B4(n + 1), B4(n + 1), B4(n + 2)
// Lookup table that store the reverse of each table
unsigned int lookuptable[256]
= { B6(0), B6(1), B6(1), B6(2) };
// function countset Bits Using lookup table
// ans return set bits count
unsigned int countSetBits(int N)
{
// first chunk of 8 bits from right
unsigned int count = lookuptable[N & 0xff] +
// second chunk from right
lookuptable[(N >> 8) & 0xff] +
// third and fourth chunks
lookuptable[(N >> 16) & 0xff]
+ lookuptable[(N >> 24) & 0xff];
return count;
}
int main()
{
unsigned int N = 354;
cout << countSetBits(N) << endl;
return 0;
}
Java
// Java count to count number of set bits
// using lookup table in O(1) time
// Generate a lookup table for 32 bit integers
import java.util.*;
class GFG {
static ArrayList<Integer> lookuptable
= new ArrayList<Integer>();
static void B2(int n)
{
lookuptable.add(n);
lookuptable.add(n + 1);
lookuptable.add(n + 1);
lookuptable.add(n + 2);
}
static void B4(int n)
{
B2(n);
B2(n + 1);
B2(n + 1);
B2(n + 2);
}
static void B6(int n)
{
B4(n);
B4(n + 1);
B4(n + 1);
B4(n + 2);
}
// function countset Bits Using lookup table
// ans return set bits count
static int countSetBits(int N)
{
// adding the bits in chunks of 8 bits
int count = lookuptable.get(N & 0xff)
+ lookuptable.get((N >> 8) & 0xff)
+ lookuptable.get((N >> 16) & 0xff)
+ lookuptable.get((N >> 24) & 0xff);
return count;
}
// Driver Code
public static void main(String[] args)
{
// Lookup table that store the reverse of each table
B6(0);
B6(1);
B6(1);
B6(2);
int N = 354;
// Function Call
System.out.println(countSetBits(N));
}
}
// This code is contributed by phasing17
Python
# Python3 count to count number of set bits
# using lookup table in O(1) time
# Generate a lookup table for 32 bit integers
lookuptable = []
def B2(n):
lookuptable.extend([n, n + 1, n + 1, n + 2])
def B4(n):
B2(n), B2(n + 1), B2(n + 1), B2(n + 2)
def B6(n):
B4(n), B4(n + 1), B4(n + 1), B4(n + 2)
# Lookup table that store the reverse of each table
lookuptable.extend([B6(0), B6(1), B6(1), B6(2)])
# function countset Bits Using lookup table
# ans return set bits count
def countSetBits(N):
# adding the bits in chunks of 8 bits
count = lookuptable[N & 0xff] + lookuptable[(N >> 8) & 0xff] + lookuptable[(
N >> 16) & 0xff] + lookuptable[(N >> 24) & 0xff]
return count
# Driver Code
N = 354
# Function Call
print(countSetBits(N))
# This code is contributed by phasing17
C#
// C# count to count number of set bits
// using lookup table in O(1) time
// Generate a lookup table for 32 bit integers
using System;
using System.Collections.Generic;
class GFG {
static List<int> lookuptable = new List<int>();
static void B2(int n)
{
lookuptable.Add(n);
lookuptable.Add(n + 1);
lookuptable.Add(n + 1);
lookuptable.Add(n + 2);
}
static void B4(int n)
{
B2(n);
B2(n + 1);
B2(n + 1);
B2(n + 2);
}
static void B6(int n)
{
B4(n);
B4(n + 1);
B4(n + 1);
B4(n + 2);
}
// function countset Bits Using lookup table
// ans return set bits count
static int countSetBits(int N)
{
// adding the bits in chunks of 8 bits
int count = lookuptable[N & 0xff]
+ lookuptable[(N >> 8) & 0xff]
+ lookuptable[(N >> 16) & 0xff]
+ lookuptable[(N >> 24) & 0xff];
return count;
}
// Driver Code
public static void Main(string[] args)
{
// Lookup table that store the reverse of each table
B6(0);
B6(1);
B6(1);
B6(2);
int N = 354;
// Function Call
Console.WriteLine(countSetBits(N));
}
}
// This code is contributed by phasing17
JavaScript
// JavaScript count to count number of set bits
// using lookup table in O(1) time
// Generate a lookup table for 32 bit integers
let lookuptable = [];
function B2(n)
{
lookuptable.push(n);
lookuptable.push(n + 1);
lookuptable.push(n + 1);
lookuptable.push(n + 2);
}
function B4(n)
{
B2(n), B2(n + 1), B2(n + 1), B2(n + 2)
}
function B6(n)
{
B4(n), B4(n + 1), B4(n + 1), B4(n + 2)
}
// Lookup table that store the reverse of each table
lookuptable.push(B6(0));
lookuptable.push(B6(1));
lookuptable.push(B6(1));
lookuptable.push(B6(2));
// function countset Bits Using lookup table
// ans return set bits count
function countSetBits(N)
{
// adding the bits in chunks of 8 bits
let count = lookuptable[N & 0xff] + lookuptable[(N >> 8) & 0xff] + lookuptable[(N >> 16) & 0xff] + lookuptable[(N >> 24) & 0xff];
return count;
}
// Driver Code
let N = 354;
// Function Call
console.log(countSetBits(N));
// This code is contributed by phasing17
Output:
4
Time Complexity: O(1)
Auxiliary Space: O(1)
Similar Reads
Count set bits in an integer Write an efficient program to count the number of 1s in the binary representation of an integer.Examples : Input : n = 6Output : 2Binary representation of 6 is 110 and has 2 set bitsInput : n = 13Output : 3Binary representation of 13 is 1101 and has 3 set bits[Naive Approach] - One by One CountingTh
15+ min read
Reverse bits using lookup table in O(1) time Given an unsigned integer, reverse all bits of it and return the number with reversed bits. Examples: Input : n = 1 Output : 2147483648 On a machine with size of unsigned bit as 32. Reverse of 0....001 is 100....0. Input : n = 2147483648 Output : 1 In the previous post we had seen two method that so
7 min read
Count unset bits in a range Given a non-negative number n and two values l and r. The problem is to count the number of unset bits in the range l to r in the binary representation of n, i.e, to count unset bits from the rightmost lth bit to the rightmost rth bit.Examples: Input : n = 42, l = 2, r = 5 Output : 2 (42)10 = (10101
6 min read
Count number of set bits in a range using bitset Given a large binary number.The task is to count the number of 1's in a given range from L to R (1 based indexing).Examples: Input : s = "101101011010100000111", L = 6, R = 15 Output : 5 s [L : R] = "1011010100" There is only 5 set bits.Input : s = "10110", L = 2, R = 5 Output : 2 Approach: Convert
5 min read
Count of N-bit odd and even integers with K set bits Given two positive integers N and K, the task is to count the number of even and odd integers consisting of N bits, out of which K bits are set. Examples: Input: N = 5, K = 2Output: 3 1Explanation:The 5 bit even integers having 2 set bits are: 10010(= 18), 10100(= 20), 11000(= 24). So, the count is
6 min read
Count trailing zero bits using lookup table Given an integer, count the number of trailing zeroes. For example, for n = 12, its binary representation is 1100 and number of trailing zero bits is 2. Examples : Input : 8 Output : 3 Binary of 8 is 1000, so there are three trailing zero bits. Input : 18 Output : 1 Binary of 18 is 10010, so there i
7 min read