Count pairs in a binary tree whose sum is equal to a given value x
Last Updated :
11 Jul, 2025
Given a binary tree containing n distinct numbers and a value x. The problem is to count pairs in the given binary tree whose sum is equal to the given value x.
Examples:
Input :
5
/ \
3 7
/ \ / \
2 4 6 8
x = 10
Output : 3
The pairs are (3, 7), (2, 8) and (4, 6).
1) Naive Approach:
One by one get each node of the binary tree through any of the tree traversals methods. Pass the node say temp, the root of the tree and value x to another function say findPair(). In the function with the help of the root pointer traverse the tree again. One by one sum up these nodes with temp and check whether sum == x. If so, increment count. Calculate count = count / 2 as a single pair has been counted twice by the aforementioned method.
Implementation:
C++
// C++ implementation to count pairs in a binary tree
// whose sum is equal to given value x
#include <bits/stdc++.h>
using namespace std;
// structure of a node of a binary tree
struct Node {
int data;
Node *left, *right;
};
// function to create and return a node
// of a binary tree
Node* getNode(int data)
{
// allocate space for the node
Node* new_node = (Node*)malloc(sizeof(Node));
// put in the data
new_node->data = data;
new_node->left = new_node->right = NULL;
return new_node;
}
// returns true if a pair exists with given sum 'x'
bool findPair(Node* root, Node* temp, int x)
{
// base case
if (!root)
return false;
// pair exists
if (root != temp && ((root->data + temp->data) == x))
return true;
// find pair in left and right subtrees
if (findPair(root->left, temp, x) || findPair(root->right, temp, x))
return true;
// pair does not exists with given sum 'x'
return false;
}
// function to count pairs in a binary tree
// whose sum is equal to given value x
void countPairs(Node* root, Node* curr, int x, int& count)
{
// if tree is empty
if (!curr)
return;
// check whether pair exists for current node 'curr'
// in the binary tree that sum up to 'x'
if (findPair(root, curr, x))
count++;
// recursively count pairs in left subtree
countPairs(root, curr->left, x, count);
// recursively count pairs in right subtree
countPairs(root, curr->right, x, count);
}
// Driver program to test above
int main()
{
// formation of binary tree
Node* root = getNode(5); /* 5 */
root->left = getNode(3); /* / \ */
root->right = getNode(7); /* 3 7 */
root->left->left = getNode(2); /* / \ / \ */
root->left->right = getNode(4); /* 2 4 6 8 */
root->right->left = getNode(6);
root->right->right = getNode(8);
int x = 10;
int count = 0;
countPairs(root, root, x, count);
count = count / 2;
cout << "Count = " << count;
return 0;
}
// This code is contributed by yash agarwal(yashagarwal2852002)
Java
// Java implementation to count pairs in a binary tree
// whose sum is equal to given value x
import java.util.*;
class GFG
{
// structure of a node of a binary tree
static class Node
{
int data;
Node left, right;
};
static int count;
// function to create and return a node
// of a binary tree
static Node getNode(int data)
{
// allocate space for the node
Node new_node = new Node();
// put in the data
new_node.data = data;
new_node.left = new_node.right = null;
return new_node;
}
// returns true if a pair exists with given sum 'x'
static boolean findPair(Node root, Node temp, int x)
{
// base case
if (root==null)
return false;
// pair exists
if (root != temp && ((root.data + temp.data) == x))
return true;
// find pair in left and right subtrees
if (findPair(root.left, temp, x) ||
findPair(root.right, temp, x))
return true;
// pair does not exists with given sum 'x'
return false;
}
// function to count pairs in a binary tree
// whose sum is equal to given value x
static void countPairs(Node root, Node curr, int x)
{
// if tree is empty
if (curr == null)
return;
// check whether pair exists for current node 'curr'
// in the binary tree that sum up to 'x'
if (findPair(root, curr, x))
count++;
// recursively count pairs in left subtree
countPairs(root, curr.left, x);
// recursively count pairs in right subtree
countPairs(root, curr.right, x);
}
// Driver code
public static void main(String[] args)
{
// formation of binary tree
Node root = getNode(5); /* 5 */
root.left = getNode(3); /* / \ */
root.right = getNode(7); /* 3 7 */
root.left.left = getNode(2); /* / \ / \ */
root.left.right = getNode(4); /* 2 4 6 8 */
root.right.left = getNode(6);
root.right.right = getNode(8);
int x = 10;
count = 0;
countPairs(root, root, x);
count = count / 2;
System.out.print("Count = " + count);
}
}
// This code is contributed by PrinciRaj1992
Python3
# Python3 implementation to count pairs in a binary tree
# whose sum is equal to given value x
# structure of a node of a binary tree
class getNode(object):
def __init__(self, value):
self.data = value
self.left = None
self.right = None
# returns True if a pair exists with given sum 'x'
def findPair(root, temp, x):
# base case
if root == None:
return False
# pair exists
if (root != temp and ((root.data + temp.data) == x)):
return True
# find pair in left and right subtrees
if (findPair(root.left, temp, x) or findPair(root.right, temp, x)):
return True
# pair does not exists with given sum 'x'
return False
# function to count pairs in a binary tree
# whose sum is equal to given value x
def countPairs(root, curr, x):
global count
# if tree is empty
if curr == None:
return
# check whether pair exists for current node 'curr'
# in the binary tree that sum up to 'x'
if (findPair(root, curr, x)):
count += 1
# recursively count pairs in left subtree
countPairs(root, curr.left, x)
# recursively count pairs in right subtree
countPairs(root, curr.right, x)
# Driver program to test above
# formation of binary tree
root = getNode(5)
root.left = getNode(3)
root.right = getNode(7)
root.left.left = getNode(2)
root.left.right = getNode(4)
root.right.left = getNode(6)
root.right.right = getNode(8)
x = 10
count = 0
countPairs(root, root, x)
count = count // 2
print("Count =", count)
# This code is contributed by shubhamsingh10
C#
// C# implementation to count pairs in a binary tree
// whose sum is equal to given value x
using System;
class GFG
{
// structure of a node of a binary tree
class Node
{
public int data;
public Node left, right;
};
static int count;
// function to create and return a node
// of a binary tree
static Node getNode(int data)
{
// allocate space for the node
Node new_node = new Node();
// put in the data
new_node.data = data;
new_node.left = new_node.right = null;
return new_node;
}
// returns true if a pair exists with given sum 'x'
static bool findPair(Node root, Node temp, int x)
{
// base case
if (root == null)
return false;
// pair exists
if (root != temp && ((root.data + temp.data) == x))
return true;
// find pair in left and right subtrees
if (findPair(root.left, temp, x) ||
findPair(root.right, temp, x))
return true;
// pair does not exists with given sum 'x'
return false;
}
// function to count pairs in a binary tree
// whose sum is equal to given value x
static void countPairs(Node root, Node curr, int x)
{
// if tree is empty
if (curr == null)
return;
// check whether pair exists for current node 'curr'
// in the binary tree that sum up to 'x'
if (findPair(root, curr, x))
count++;
// recursively count pairs in left subtree
countPairs(root, curr.left, x);
// recursively count pairs in right subtree
countPairs(root, curr.right, x);
}
// Driver code
public static void Main(String[] args)
{
// formation of binary tree
Node root = getNode(5); /* 5 */
root.left = getNode(3); /* / \ */
root.right = getNode(7); /* 3 7 */
root.left.left = getNode(2); /* / \ / \ */
root.left.right = getNode(4); /* 2 4 6 8 */
root.right.left = getNode(6);
root.right.right = getNode(8);
int x = 10;
count = 0;
countPairs(root, root, x);
count = count / 2;
Console.Write("Count = " + count);
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// Javascript implementation to count
// pairs in a binary tree whose sum is
// equal to given value x
// Structure of a node of a binary tree
class Node
{
constructor()
{
this.data = 0;
this.left = null;
this.right = null;
}
};
var count = 0;
// Function to create and return a node
// of a binary tree
function getNode(data)
{
// Allocate space for the node
var new_node = new Node();
// Put in the data
new_node.data = data;
new_node.left = new_node.right = null;
return new_node;
}
// Returns true if a pair exists
// with given sum 'x'
function findPair(root, temp, x)
{
// Base case
if (root == null)
return false;
// Pair exists
if (root != temp &&
((root.data + temp.data) == x))
return true;
// Find pair in left and right subtrees
if (findPair(root.left, temp, x) ||
findPair(root.right, temp, x))
return true;
// Pair does not exists with given sum 'x'
return false;
}
// Function to count pairs in a binary tree
// whose sum is equal to given value x
function countPairs( root, curr, x)
{
// If tree is empty
if (curr == null)
return;
// Check whether pair exists for current node
// 'curr' in the binary tree that sum up to 'x'
if (findPair(root, curr, x))
count++;
// Recursively count pairs in left subtree
countPairs(root, curr.left, x);
// Recursively count pairs in right subtree
countPairs(root, curr.right, x);
}
// Driver code
// Formation of binary tree
var root = getNode(5); /* 5 */
root.left = getNode(3); /* / \ */
root.right = getNode(7); /* 3 7 */
root.left.left = getNode(2); /* / \ / \ */
root.left.right = getNode(4); /* 2 4 6 8 */
root.right.left = getNode(6);
root.right.right = getNode(8);
var x = 10;
count = 0;
countPairs(root, root, x);
count = parseInt(count / 2);
document.write("Count = " + count);
// This code is contributed by noob2000
</script>
Time Complexity: O(n^2).
Auxiliary Space: O(1)
2) Efficient Approach: Following are the steps:
- Convert given binary tree to doubly linked list. Refer this post.
- Sort the doubly linked list obtained in Step 1. Refer this post.
- Count Pairs in sorted doubly linked with sum equal to 'x'. Refer this post.
- Display the count obtained in Step 4.
Implementation:
C++
// C++ implementation to count pairs in a binary tree
// whose sum is equal to given value x
#include <bits/stdc++.h>
using namespace std;
// structure of a node of a binary tree
struct Node {
int data;
Node *left, *right;
Node(int val){
this->data = val;
this->left = this->right = NULL;
}
};
// A simple recursive function to convert a given
// Binary tree to Doubly Linked List
// root --> Root of Binary Tree
// head_ref --> Pointer to head node of created
// doubly linked list
void BToDLL(Node* root, Node** head_ref)
{
// Base cases
if (root == NULL)
return;
// Recursively convert right subtree
BToDLL(root->right, head_ref);
// insert root into DLL
root->right = *head_ref;
// Change left pointer of previous head
if (*head_ref != NULL)
(*head_ref)->left = root;
// Change head of Doubly linked list
*head_ref = root;
// Recursively convert left subtree
BToDLL(root->left, head_ref);
}
// Split a doubly linked list (DLL) into 2 DLLs of
// half sizes
Node* split(Node* head)
{
Node *fast = head, *slow = head;
while (fast->right && fast->right->right) {
fast = fast->right->right;
slow = slow->right;
}
Node* temp = slow->right;
slow->right = NULL;
return temp;
}
// Function to merge two sorted doubly linked lists
Node* merge(Node* first, Node* second)
{
// If first linked list is empty
if (!first)
return second;
// If second linked list is empty
if (!second)
return first;
// Pick the smaller value
if (first->data < second->data) {
first->right = merge(first->right, second);
first->right->left = first;
first->left = NULL;
return first;
}
else {
second->right = merge(first, second->right);
second->right->left = second;
second->left = NULL;
return second;
}
}
// Function to do merge sort
Node* mergeSort(Node* head)
{
if (!head || !head->right)
return head;
Node* second = split(head);
// Recur for left and right halves
head = mergeSort(head);
second = mergeSort(second);
// Merge the two sorted halves
return merge(head, second);
}
// Function to count pairs in a sorted doubly linked list
// whose sum equal to given value x
int pairSum(Node* head, int x)
{
// Set two pointers, first to the beginning of DLL
// and second to the end of DLL.
Node* first = head;
Node* second = head;
while (second->right != NULL)
second = second->right;
int count = 0;
// The loop terminates when either of two pointers
// become NULL, or they cross each other (second->right
// == first), or they become same (first == second)
while (first != NULL && second != NULL && first != second && second->right != first) {
// pair found
if ((first->data + second->data) == x) {
count++;
// move first in forward direction
first = first->right;
// move second in backward direction
second = second->left;
}
else {
if ((first->data + second->data) < x)
first = first->right;
else
second = second->left;
}
}
return count;
}
// function to count pairs in a binary tree
// whose sum is equal to given value x
int countPairs(Node* root, int x)
{
Node* head = NULL;
int count = 0;
// Convert binary tree to
// doubly linked list
BToDLL(root, &head);
// sort DLL
head = mergeSort(head);
// count pairs
return pairSum(head, x);
}
// Driver program to test above
int main()
{
// formation of binary tree
Node* root = new Node(5); /* 5 */
root->left = new Node(3); /* / \ */
root->right = new Node(7); /* 3 7 */
root->left->left = new Node(2); /* / \ / \ */
root->left->right = new Node(4); /* 2 4 6 8 */
root->right->left = new Node(6);
root->right->right = new Node(8);
int x = 10;
cout << "Count = "
<< countPairs(root, x);
return 0;
}
Java
// Java implementation to count pairs
// in a binary tree whose sum is equal to
// given value x
class GFG
{
// structure of a node of a binary tree
static class Node
{
int data;
Node left, right;
};
static Node head_ref;
// function to create and return a node
// of a binary tree
static Node getNode(int data)
{
// allocate space for the node
Node new_node = new Node();
// put in the data
new_node.data = data;
new_node.left = new_node.right = null;
return new_node;
}
// A simple recursive function to convert
// a given Binary tree to Doubly Linked List
// root -. Root of Binary Tree
// head_ref -. Pointer to head node of created
// doubly linked list
static void BToDLL(Node root)
{
// Base cases
if (root == null)
return;
// Recursively convert right subtree
BToDLL(root.right);
// insert root into DLL
root.right = head_ref;
// Change left pointer of previous head
if (head_ref != null)
head_ref.left = root;
// Change head of Doubly linked list
head_ref = root;
// Recursively convert left subtree
BToDLL(root.left);
}
// Split a doubly linked list (DLL)
// into 2 DLLs of half sizes
static Node split(Node head)
{
Node fast = head, slow = head;
while (fast.right != null &&
fast.right.right != null)
{
fast = fast.right.right;
slow = slow.right;
}
Node temp = slow.right;
slow.right = null;
return temp;
}
// Function to merge two sorted
// doubly linked lists
static Node merge(Node first, Node second)
{
// If first linked list is empty
if (first == null)
return second;
// If second linked list is empty
if (second == null)
return first;
// Pick the smaller value
if (first.data < second.data)
{
first.right = merge(first.right,
second);
first.right.left = first;
first.left = null;
return first;
}
else
{
second.right = merge(first,
second.right);
second.right.left = second;
second.left = null;
return second;
}
}
// Function to do merge sort
static Node mergeSort(Node head)
{
if (head == null || head.right == null)
return head;
Node second = split(head);
// Recur for left and right halves
head = mergeSort(head);
second = mergeSort(second);
// Merge the two sorted halves
return merge(head, second);
}
// Function to count pairs in a sorted
// doubly linked list whose sum equal
// to given value x
static int pairSum(Node head, int x)
{
// Set two pointers, first to the beginning
// of DLL and second to the end of DLL.
Node first = head;
Node second = head;
while (second.right != null)
second = second.right;
int count = 0;
// The loop terminates when either of two pointers
// become null, or they cross each other (second.right
// == first), or they become same (first == second)
while (first != null && second != null &&
first != second && second.right != first)
{
// pair found
if ((first.data + second.data) == x)
{
count++;
// move first in forward direction
first = first.right;
// move second in backward direction
second = second.left;
}
else
{
if ((first.data + second.data) < x)
first = first.right;
else
second = second.left;
}
}
return count;
}
// function to count pairs in a binary tree
// whose sum is equal to given value x
static int countPairs(Node root, int x)
{
head_ref = null;
// Convert binary tree to
// doubly linked list
BToDLL(root);
// sort DLL
head_ref = mergeSort(head_ref);
// count pairs
return pairSum(head_ref, x);
}
// Driver Code
public static void main(String[] args)
{
// formation of binary tree
Node root = getNode(5); /* 5 */
root.left = getNode(3); /* / \ */
root.right = getNode(7); /* 3 7 */
root.left.left = getNode(2); /* / \ / \ */
root.left.right = getNode(4); /* 2 4 6 8 */
root.right.left = getNode(6);
root.right.right = getNode(8);
int x = 10;
System.out.print("Count = " +
countPairs(root, x));
}
}
// This code is contributed by Rajput-Ji
Python3
# Python3 implementation to count pairs in a binary tree
# whose sum is equal to given value x
# structure of a node of a binary tree
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
head_ref = None
# function to create and return a node
# of a binary tree
def getNode(data):
# allocate space for the node
new_node = Node(data)
return new_node
# A simple recursive function to convert a given
# Binary tree to Doubly Linked List
# root -. Root of Binary Tree
# head_ref -. Pointer to head node of created
# doubly linked list
def BToDLL(root):
global head_ref
# Base cases
if (root == None):
return;
# Recursively convert right subtree
BToDLL(root.right)
# insert root into DLL
root.right = head_ref;
# Change left pointer of previous head
if (head_ref != None):
(head_ref).left = root;
# Change head of Doubly linked list
head_ref = root;
# Recursively convert left subtree
BToDLL(root.left);
return head_ref
# Split a doubly linked list (DLL) into 2 DLLs of
# half sizes
def split(head):
fast = head
slow = head;
while (fast.right and fast.right.right):
fast = fast.right.right;
slow = slow.right;
temp = slow.right;
slow.right = None;
return temp;
# Function to merge two sorted doubly linked lists
def merge(first, second):
# If first linked list is empty
if (not first):
return second;
# If second linked list is empty
if (not second):
return first;
# Pick the smaller value
if (first.data < second.data):
first.right = merge(first.right, second);
first.right.left = first;
first.left = None;
return first;
else:
second.right = merge(first, second.right);
second.right.left = second;
second.left = None;
return second;
# Function to do merge sort
def mergeSort(head):
if (head == None or head.right == None):
return head;
second = split(head);
# Recur for left and right halves
head = mergeSort(head);
second = mergeSort(second);
# Merge the two sorted halves
return merge(head, second);
# Function to count pairs in a sorted doubly linked list
# whose sum equal to given value x
def pairSum(head, x):
# Set two pointers, first to the beginning of DLL
# and second to the end of DLL.
first = head;
second = head;
while (second.right != None):
second = second.right;
count = 0;
# The loop terminates when either of two pointers
# become None, or they cross each other (second.right
# == first), or they become same (first == second)
while (first != None and second != None and first != second and second.right != first):
# pair found
if ((first.data + second.data) == x):
count += 1
# move first in forward direction
first = first.right;
# move second in backward direction
second = second.left;
else:
if ((first.data + second.data) < x):
first = first.right;
else:
second = second.left;
return count;
# function to count pairs in a binary tree
# whose sum is equal to given value x
def countPairs(root, x):
global head_ref
head_ref = None;
# Convert binary tree to
# doubly linked list
BToDLL(root);
# sort DLL
head_ref = mergeSort(head_ref);
# count pairs
return pairSum(head_ref, x);
# Driver code
if __name__=='__main__':
# formation of binary tree
root = getNode(5); # 5
root.left = getNode(3); # / \
root.right = getNode(7); # 3 7
root.left.left = getNode(2); # / \ / \
root.left.right = getNode(4);# 2 4 6 8
root.right.left = getNode(6);
root.right.right = getNode(8);
x = 10;
print("Count = " + str(countPairs(root, x)))
# This code is contributed by rutvik_56
C#
// C# implementation to count pairs
// in a binary tree whose sum is
// equal to the given value x
using System;
class GFG
{
// structure of a node of a binary tree
class Node
{
public int data;
public Node left, right;
};
static Node head_ref;
// function to create and return a node
// of a binary tree
static Node getNode(int data)
{
// allocate space for the node
Node new_node = new Node();
// put in the data
new_node.data = data;
new_node.left = new_node.right = null;
return new_node;
}
// A simple recursive function to convert
// a given Binary tree to Doubly Linked List
// root -. Root of Binary Tree
// head_ref -. Pointer to head node of
// created doubly linked list
static void BToDLL(Node root)
{
// Base cases
if (root == null)
return;
// Recursively convert right subtree
BToDLL(root.right);
// insert root into DLL
root.right = head_ref;
// Change left pointer of previous head
if (head_ref != null)
head_ref.left = root;
// Change head of Doubly linked list
head_ref = root;
// Recursively convert left subtree
BToDLL(root.left);
}
// Split a doubly linked list (DLL)
// into 2 DLLs of half sizes
static Node split(Node head)
{
Node fast = head, slow = head;
while (fast.right != null &&
fast.right.right != null)
{
fast = fast.right.right;
slow = slow.right;
}
Node temp = slow.right;
slow.right = null;
return temp;
}
// Function to merge two sorted
// doubly linked lists
static Node merge(Node first,
Node second)
{
// If first linked list is empty
if (first == null)
return second;
// If second linked list is empty
if (second == null)
return first;
// Pick the smaller value
if (first.data < second.data)
{
first.right = merge(first.right,
second);
first.right.left = first;
first.left = null;
return first;
}
else
{
second.right = merge(first,
second.right);
second.right.left = second;
second.left = null;
return second;
}
}
// Function to do merge sort
static Node mergeSort(Node head)
{
if (head == null || head.right == null)
return head;
Node second = split(head);
// Recur for left and right halves
head = mergeSort(head);
second = mergeSort(second);
// Merge the two sorted halves
return merge(head, second);
}
// Function to count pairs in a sorted
// doubly linked list whose sum equal
// to given value x
static int pairSum(Node head, int x)
{
// Set two pointers, first to the beginning
// of DLL and second to the end of DLL.
Node first = head;
Node second = head;
while (second.right != null)
second = second.right;
int count = 0;
// The loop terminates when either of
// two pointers become null, or they
// cross each other (second.right == first),
// or they become same (first == second)
while (first != null && second != null &&
first != second && second.right != first)
{
// pair found
if ((first.data + second.data) == x)
{
count++;
// move first in forward direction
first = first.right;
// move second in backward direction
second = second.left;
}
else
{
if ((first.data + second.data) < x)
first = first.right;
else
second = second.left;
}
}
return count;
}
// function to count pairs in a binary tree
// whose sum is equal to given value x
static int countPairs(Node root, int x)
{
head_ref = null;
// Convert binary tree to
// doubly linked list
BToDLL(root);
// sort DLL
head_ref = mergeSort(head_ref);
// count pairs
return pairSum(head_ref, x);
}
// Driver Code
public static void Main(String[] args)
{
// formation of binary tree
Node root = getNode(5); /* 5 */
root.left = getNode(3); /* / \ */
root.right = getNode(7); /* 3 7 */
root.left.left = getNode(2); /* / \ / \ */
root.left.right = getNode(4); /* 2 4 6 8 */
root.right.left = getNode(6);
root.right.right = getNode(8);
int x = 10;
Console.Write("Count = " +
countPairs(root, x));
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// JavaScript implementation to count pairs
// in a binary tree whose sum is
// equal to the given value x
// structure of a node of a binary tree
class Node {
constructor() {
this.data = 0;
this.left = null;
this.right = null;
}
}
var head_ref = null;
// function to create and return a node
// of a binary tree
function getNode(data) {
// allocate space for the node
var new_node = new Node();
// put in the data
new_node.data = data;
new_node.left = new_node.right = null;
return new_node;
}
// A simple recursive function to convert
// a given Binary tree to Doubly Linked List
// root -. Root of Binary Tree
// head_ref -. Pointer to head node of
// created doubly linked list
function BToDLL(root) {
// Base cases
if (root == null) return;
// Recursively convert right subtree
BToDLL(root.right);
// insert root into DLL
root.right = head_ref;
// Change left pointer of previous head
if (head_ref != null) head_ref.left = root;
// Change head of Doubly linked list
head_ref = root;
// Recursively convert left subtree
BToDLL(root.left);
}
// Split a doubly linked list (DLL)
// into 2 DLLs of half sizes
function split(head) {
var fast = head,
slow = head;
while (fast.right != null && fast.right.right != null) {
fast = fast.right.right;
slow = slow.right;
}
var temp = slow.right;
slow.right = null;
return temp;
}
// Function to merge two sorted
// doubly linked lists
function merge(first, second) {
// If first linked list is empty
if (first == null) return second;
// If second linked list is empty
if (second == null) return first;
// Pick the smaller value
if (first.data < second.data) {
first.right = merge(first.right, second);
first.right.left = first;
first.left = null;
return first;
} else {
second.right = merge(first, second.right);
second.right.left = second;
second.left = null;
return second;
}
}
// Function to do merge sort
function mergeSort(head) {
if (head == null || head.right == null) return head;
var second = split(head);
// Recur for left and right halves
head = mergeSort(head);
second = mergeSort(second);
// Merge the two sorted halves
return merge(head, second);
}
// Function to count pairs in a sorted
// doubly linked list whose sum equal
// to given value x
function pairSum(head, x) {
// Set two pointers, first to the beginning
// of DLL and second to the end of DLL.
var first = head;
var second = head;
while (second.right != null) second = second.right;
var count = 0;
// The loop terminates when either of
// two pointers become null, or they
// cross each other (second.right == first),
// or they become same (first == second)
while (
first != null &&
second != null &&
first != second &&
second.right != first
) {
// pair found
if (first.data + second.data == x) {
count++;
// move first in forward direction
first = first.right;
// move second in backward direction
second = second.left;
} else {
if (first.data + second.data < x) first = first.right;
else second = second.left;
}
}
return count;
}
// function to count pairs in a binary tree
// whose sum is equal to given value x
function countPairs(root, x) {
head_ref = null;
// Convert binary tree to
// doubly linked list
BToDLL(root);
// sort DLL
head_ref = mergeSort(head_ref);
// count pairs
return pairSum(head_ref, x);
}
// Driver Code
// formation of binary tree
var root = getNode(5); /* 5 */
root.left = getNode(3); /* / \ */
root.right = getNode(7); /* 3 7 */
root.left.left = getNode(2); /* / \ / \ */
root.left.right = getNode(4); /* 2 4 6 8 */
root.right.left = getNode(6);
root.right.right = getNode(8);
var x = 10;
document.write("Count = " + countPairs(root, x));
</script>
Time Complexity: O(nLog n).
Auxiliary Space: O(N)
3)Another Efficient Approach - No need for converting to DLL and sorting: Following are the steps:
- Traverse the tree in any order (pre / post / in).
- Create an empty hash and keep adding difference between current node's value and X to it.
- At each node, check if it's value is in the hash, if yes then increment the count by 1 and DO NOT add this node's value's difference with X in the hash to avoid duplicate counting for a single pair.
Implementation:
C++
#include <iostream>
#include <unordered_set>
using namespace std;
// Node class to represent a
// node in the binary tree
// with value, left and right attributes
class Node {
public:
int value;
Node* left;
Node* right;
Node(int value, Node* left = nullptr, Node* right = nullptr) : value(value), left(left), right(right) {}
};
// To store count of pairs
int count = 0;
// To store difference between
// current node's value and x,
// acts a lookup for counting pairs
unordered_set<int> hash_t;
// The input, we need to count
// pairs whose sum is equal to x
int x = 10;
// Function to count number of pairs
// Does a pre-order traversal of the tree
void count_pairs_w_sum(Node* root) {
if (root != nullptr) {
if (hash_t.count(root->value)) {
count++;
}
else {
hash_t.insert(x - root->value);
}
count_pairs_w_sum(root->left);
count_pairs_w_sum(root->right);
}
}
// Entry point / Driver - Create a
// binary tree and call the function
// to get the count
int main() {
Node* root = new Node(5);
root->left = new Node(3);
root->right = new Node(7);
root->left->left = new Node(2);
root->left->right = new Node(4);
root->right->left = new Node(6);
root->right->right = new Node(8);
count_pairs_w_sum(root);
cout << count << endl;
return 0;
}
// This code is contributed by lokeshpotta20.
Java
// Java program to Count pairs
// in a binary tree whose sum is
// equal to a given value x
import java.util.HashSet;
public class GFG
{
// Node class to represent a
// node in the binary tree
// with value, left and right attributes
static class Node {
int value;
Node left, right;
public Node(int value) {
this.value = value;
}
}
// To store count of pairs
static int count = 0;
// To store difference between
// current node's value and x,
// acts a lookup for counting pairs
static HashSet<Integer> hash_t = new HashSet<Integer>();
// The input, we need to count
// pairs whose sum is equal to x
static int x = 10;
// Function to count number of pairs
// Does a pre-order traversal of the tree
static void count_pairs_w_sum(Node root) {
if( root != null) {
if (hash_t.contains(root.value))
count += 1;
else
hash_t.add(x-root.value);
count_pairs_w_sum(root.left);
count_pairs_w_sum(root.right);
}
}
//Driver method
public static void main(String[] args) {
Node root = new Node(5);
root.left = new Node(3);
root.right = new Node(7);
root.left.left = new Node(2);
root.left.right = new Node(4);
root.right.left = new Node(6);
root.right.right = new Node(8);
count_pairs_w_sum(root);
System.out.println(count);
}
}
// This code is contributed by Lovely Jain
Python
# Python program to Count pairs
# in a binary tree whose sum is
# equal to a given value x
# Node class to represent a
# node in the binary tree
# with value, left and right attributes
class Node(object):
def __init__(self, value, left=None, right=None):
self.value = value
self.left = left
self.right = right
# To store count of pairs
count = 0
# To store difference between
# current node's value and x,
# acts a lookup for counting pairs
hash_t = set()
# The input, we need to count
# pairs whose sum is equal to x
x = 10
# Function to count number of pairs
# Does a pre-order traversal of the tree
def count_pairs_w_sum(root):
global count
if root:
if root.value in hash_t:
count += 1
else:
hash_t.add(x-root.value)
count_pairs_w_sum(root.left)
count_pairs_w_sum(root.right)
# Entry point / Driver - Create a
# binary tree and call the function
# to get the count
if __name__ == '__main__':
root = Node(5)
root.left = Node(3)
root.right = Node(7)
root.left.left = Node(2)
root.left.right = Node(4)
root.right.left = Node(6)
root.right.right = Node(8)
count_pairs_w_sum(root)
print count
C#
// C# program to count pairs in binary tree whose sum is
// equal to a given value in x
using System;
using System.Collections.Generic;
public class GFG {
// Node class to represent a
// node in the binary tree
// with value, left and right attributes
class Node {
public int value;
public Node left, right;
public Node(int value) { this.value = value; }
}
// To stsore count of pairs
static int count = 0;
// To store difference between
// current node's value and x,
// acts a lookup for counting pairs
static HashSet<int> hash_t = new HashSet<int>();
// The input, we need to count
// pairs whose sum is equal to x
static int x = 10;
// Function to count number of pairs
// Does a pre-order traversal of the tree
static void count_pairs_w_sum(Node root)
{
if (root != null) {
if (hash_t.Contains(root.value))
count += 1;
else
hash_t.Add(x - root.value);
count_pairs_w_sum(root.left);
count_pairs_w_sum(root.right);
}
}
static public void Main()
{
// Code
Node root = new Node(5);
root.left = new Node(3);
root.right = new Node(7);
root.left.left = new Node(2);
root.left.right = new Node(4);
root.right.left = new Node(6);
root.right.right = new Node(8);
count_pairs_w_sum(root);
Console.WriteLine(count);
}
}
// This code is contributed by lokeshmvs21.
JavaScript
// THIS CODE IS CONTRIBUTED BY KIRTI AGARWAL
// JavaScript program to count pairs in binary tree whose sum is
// equal to a given value in x
class Node{
constructor(value){
this.value = value;
this.left = null;
this.right = null;
}
}
// To store count of pairs
let count = 0;
// To store difference between
// current node's value and x,
// acts a lookup for counting pairs
let hash_t = new Set();
// The input, we need to count
// pairs whose sum is equal to x
let x = 10;
// Function to count number of pairs
// Does a pre-order traversal of the tree
function count_pairs_w_sum(root){
if(root != null){
if(hash_t.has(root.value)){
count++;
}
else{
hash_t.add(x-root.value);
}
count_pairs_w_sum(root.left);
count_pairs_w_sum(root.right);
}
}
// Entry point / Driver - Create a
// binary tree and call the function
// to get the count
let root = new Node(5);
root.left = new Node(3);
root.right = new Node(7);
root.left.left = new Node(2);
root.left.right = new Node(4);
root.right.left = new Node(6);
root.right.right = new Node(8);
count_pairs_w_sum(root);
console.log(count);
Complexity Analysis:
- Time Complexity: O(n)
- Space Complexity: O(n)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem