Count pairs in an array which have at least one digit common
Last Updated :
08 Mar, 2023
Given an array of N numbers. Find out the number of pairs i and j such that i < j and Ai and Aj have at least one digit common (For e.g. (11, 19) have 1 digit common but (36, 48) have no digit common)
Examples:
Input: A[] = { 10, 12, 24 }
Output: 2
Explanation: Two valid pairs are (10, 12) and (12, 24) which have atleast one digit common
Method 1 (Brute Force):
A naive approach to solve this problem is just by running two nested loops and consider all possible pairs. We can check if the two numbers have at least one common digit, by extracting every digit of the first number and try to find it in the extracted digits of second number. The task would become much easier we simply convert them into strings.
Below is the implementation of the above approach:
C++
// CPP Program to count pairs in an array
// with some common digit
#include <bits/stdc++.h>
using namespace std;
// Returns true if the pair is valid,
// otherwise false
bool checkValidPair(int num1, int num2)
{
// converting integers to strings
string s1 = to_string(num1);
string s2 = to_string(num2);
// Iterate over the strings and check
// if a character in first string is also
// present in second string, return true
for (int i = 0; i < s1.size(); i++)
for (int j = 0; j < s2.size(); j++)
if (s1[i] == s2[j])
return true;
// No common digit found
return false;
}
// Returns the number of valid pairs
int countPairs(int arr[], int n)
{
int numberOfPairs = 0;
// Iterate over all possible pairs
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
if (checkValidPair(arr[i], arr[j]))
numberOfPairs++;
return numberOfPairs;
}
// Driver Code to test above functions
int main()
{
int arr[] = { 10, 12, 24 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << countPairs(arr, n) << endl;
return 0;
}
Java
// Java Program to count
// pairs in an array
// with some common digit
import java.io.*;
class GFG
{
// Returns true if the pair
// is valid, otherwise false
static boolean checkValidPair(int num1,
int num2)
{
// converting integers
// to strings
String s1 = Integer.toString(num1);
String s2 = Integer.toString(num2);
// Iterate over the strings
// and check if a character
// in first string is also
// present in second string,
// return true
for (int i = 0; i < s1.length(); i++)
for (int j = 0; j < s2.length(); j++)
if (s1.charAt(i) == s2.charAt(j))
return true;
// No common
// digit found
return false;
}
// Returns the number
// of valid pairs
static int countPairs(int []arr, int n)
{
int numberOfPairs = 0;
// Iterate over all
// possible pairs
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
if (checkValidPair(arr[i], arr[j]))
numberOfPairs++;
return numberOfPairs;
}
// Driver Code
public static void main(String args[])
{
int []arr = new int[]{ 10, 12, 24 };
int n = arr.length;
System.out.print(countPairs(arr, n));
}
}
// This code is contributed
// by manish shaw.
Python3
# Python3 Program to count pairs in
# an array with some common digit
# Returns true if the pair is
# valid, otherwise false
def checkValidPair(num1, num2) :
# converting integers to strings
s1 = str(num1)
s2 = str(num2)
# Iterate over the strings and check if
# a character in first string is also
# present in second string, return true
for i in range(len(s1)) :
for j in range(len(s2)) :
if (s1[i] == s2[j]) :
return True;
# No common digit found
return False;
# Returns the number of valid pairs
def countPairs(arr, n) :
numberOfPairs = 0
# Iterate over all possible pairs
for i in range(n) :
for j in range(i + 1, n) :
if (checkValidPair(arr[i], arr[j])) :
numberOfPairs += 1
return numberOfPairs
# Driver Code
if __name__ == "__main__" :
arr = [ 10, 12, 24 ]
n = len(arr)
print(countPairs(arr, n))
# This code is contributed by Ryuga
C#
// C# Program to count pairs in an array
// with some common digit
using System;
class GFG {
// Returns true if the pair is valid,
// otherwise false
static bool checkValidPair(int num1, int num2)
{
// converting integers to strings
string s1 = num1.ToString();
string s2 = num2.ToString();
// Iterate over the strings and check
// if a character in first string is also
// present in second string, return true
for (int i = 0; i < s1.Length; i++)
for (int j = 0; j < s2.Length; j++)
if (s1[i] == s2[j])
return true;
// No common digit found
return false;
}
// Returns the number of valid pairs
static int countPairs(int []arr, int n)
{
int numberOfPairs = 0;
// Iterate over all possible pairs
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
if (checkValidPair(arr[i], arr[j]))
numberOfPairs++;
return numberOfPairs;
}
// Driver Code to test above functions
static void Main()
{
int []arr = new int[]{ 10, 12, 24 };
int n = arr.Length;
Console.WriteLine(countPairs(arr, n));
}
}
// This code is contributed by manish shaw.
PHP
<?php
// PHP Program to count pairs in an array
// with some common digit
// Returns true if the pair is valid,
// otherwise false
function checkValidPair($num1, $num2)
{
// converting integers to strings
$s1 = (string)$num1;
$s2 = (string)$num2;
// Iterate over the strings and check
// if a character in first string is also
// present in second string, return true
for ($i = 0; $i < strlen($s1); $i++)
for ($j = 0; $j < strlen($s2); $j++)
if ($s1[$i] == $s2[$j])
return true;
// No common digit found
return false;
}
// Returns the number of valid pairs
function countPairs(&$arr, $n)
{
$numberOfPairs = 0;
// Iterate over all possible pairs
for ($i = 0; $i < $n; $i++)
for ($j = $i + 1; $j < $n; $j++)
if (checkValidPair($arr[$i],
$arr[$j]))
$numberOfPairs++;
return $numberOfPairs;
}
// Driver Code
$arr = array(10, 12, 24 );
$n = sizeof($arr);
echo (countPairs($arr, $n));
// This code is contributed
// by Shivi_Aggarwal
?>
JavaScript
<script>
// Javascript Program to count pairs in an array
// with some common digit
// Returns true if the pair is valid,
// otherwise false
function checkValidPair(num1, num2)
{
// converting integers to strings
var s1 = num1.toString();
var s2 = num2.toString();
var i,j;
// Iterate over the strings and check
// if a character in first string is also
// present in second string, return true
for(i = 0; i < s1.length; i++)
for(j = 0; j < s2.length; j++)
if (s1[i] == s2[j])
return true;
// No common digit found
return false;
}
// Returns the number of valid pairs
function countPairs(arr, n)
{
var numberOfPairs = 0;
// Iterate over all possible pairs
for(i = 0; i < n; i++)
for(j = i + 1; j < n; j++)
if(checkValidPair(arr[i], arr[j]))
numberOfPairs++;
return numberOfPairs;
}
// Driver Code to test above functions
var arr = [10, 12, 24];
var n = arr.length;;
document.write(countPairs(arr, n));
</script>
Time Complexity: O(N2) where N is the size of array.
Space Complexity : O( 1 )
Method 2 (Bit Masking):
An efficient approach of solving this problem is creating a bit mask for every digit present in a particular number. Thus, for every digit to be present in a number if we have a mask of 1111111111.
Digits - 0 1 2 3 4 5 6 7 8 9
| | | | | | | | | |
Mask - 1 1 1 1 1 1 1 1 1 1
Here 1 denotes that the corresponding ith digit is set.
For e.g. 1235 can be represented as
Digits - 0 1 2 3 4 5 6 7 8 9
| | | | | | | | | |
Mask for 1235 - 0 1 1 1 0 1 0 0 0 0
Now we just have to extract every digit of a number and make the corresponding bit set (1 << ith digit) and store the whole number as a mask. Careful analysis suggests that the maximum value of the mask is 1023 in decimal (which contains all the digits from 0 - 9). Since the same set of digits can exist in more than one number, we need to maintain a frequency array to store the count of mask value.
Let the frequencies of two masks i and j be freqi and freqj respectively,
If(i AND j) return true, means ith and jth mask contains atleast one common set bit which in turn implies that the numbers from which these masks have been built also contain a common digit
then,
increment the answer
ans += freqi * freqj [ if i != j ]
ans += (freqi * (freqi - 1)) / 2 [ if j == i ]
Below is the implementation of this efficient approach:
C++
// CPP Program to count pairs in an array with
// some common digit
#include <bits/stdc++.h>
using namespace std;
// This function calculates the mask frequencies
// for every present in the array
void calculateMaskFrequencies(int arr[], int n,
unordered_map<int, int>& freq)
{
// Iterate over the array
for (int i = 0; i < n; i++) {
int num = arr[i];
// Creating an empty mask
int mask = 0;
// Extracting every digit of the number
// and updating corresponding bit in the
// mask
while (num > 0) {
mask = mask | (1 << (num % 10));
num /= 10;
}
// Update the frequency array
freq[mask]++;
}
}
// Function return the number of valid pairs
int countPairs(int arr[], int n)
{
// Store the mask frequencies
unordered_map<int, int> freq;
calculateMaskFrequencies(arr, n, freq);
long long int numberOfPairs = 0;
// Considering every possible pair of masks
// and calculate pairs according to their
// frequencies
for (int i = 0; i < 1024; i++) {
numberOfPairs += (freq[i] * (freq[i] - 1)) / 2;
for (int j = i + 1; j < 1024; j++) {
// if it contains a common digit
if (i & j)
numberOfPairs += (freq[i] * freq[j]);
}
}
return numberOfPairs;
}
// Driver Code to test above functions
int main()
{
int arr[] = { 10, 12, 24 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << countPairs(arr, n) << endl;
return 0;
}
Java
// Java Program to count pairs in an array with
// some common digit
import java.io.*;
import java.util.*;
class GFG
{
// Store the mask frequencies
public static Map<Integer, Integer> freq = new HashMap<Integer, Integer>();
// This function calculates the mask frequencies
// for every present in the array
public static void calculateMaskFrequencies(int[] arr,int n)
{
// Iterate over the array
for(int i = 0; i < n; i++)
{
int num = arr[i];
// Creating an empty mask
int mask = 0;
// Extracting every digit of the number
// and updating corresponding bit in the
// mask
while(num > 0)
{
mask = mask | (1 << (num % 10));
num /= 10;
}
// Update the frequency array
if(freq.containsKey(mask))
{
freq.put(new Integer(mask), freq.get(mask) + 1);
}
else
{
freq.put(new Integer(mask), 1);
}
}
}
// Function return the number of valid pairs
public static int countPairs(int[] arr, int n)
{
calculateMaskFrequencies(arr, n);
int numberOfPairs = 0;
// Considering every possible pair of masks
// and calculate pairs according to their
// frequencies
for(int i = 0; i < 1024; i++)
{
int x = 0;
if(freq.containsKey(i))
{
x = freq.get(i);
}
numberOfPairs += ((x) * (x - 1)) / 2;
for(int j = i + 1; j < 1024; j++)
{
int y = 0;
// if it contains a common digit
if((i & j) != 0)
{
if(freq.containsKey(j))
{
y = freq.get(j);
}
numberOfPairs += x * y;
}
}
}
return numberOfPairs;
}
// Driver Code
public static void main (String[] args)
{
int[] arr = {10, 12, 24};
int n = arr.length;
System.out.println(countPairs(arr, n));
}
}
// This code is contributed by avanitrachhadiya2155
Python3
# Python3 Program to count pairs in an array
# with some common digit
# This function calculates the mask frequencies
# for every present in the array
def calculateMaskFrequencies(arr, n, freq):
# Iterate over the array
for i in range(n):
num = arr[i]
# Creating an empty mask
mask = 0
# Extracting every digit of the number
# and updating corresponding bit in the
# mask
while (num > 0):
mask = mask | (1 << (num % 10))
num //= 10
# Update the frequency array
freq[mask] = freq.get(mask, 0) + 1
# Function return the number of valid pairs
def countPairs(arr, n):
# Store the mask frequencies
freq = dict()
calculateMaskFrequencies(arr, n, freq)
numberOfPairs = 0
# Considering every possible pair of masks
# and calculate pairs according to their
# frequencies
for i in range(1024):
x = 0
if i in freq.keys():
x = freq[i]
numberOfPairs += (x * (x - 1)) // 2
for j in range(i + 1, 1024):
y = 0
if j in freq.keys():
y = freq[j]
# if it contains a common digit
if (i & j):
numberOfPairs += (x * y)
return numberOfPairs
# Driver Code
arr = [10, 12, 24]
n = len(arr)
print(countPairs(arr, n))
# This code is contributed by mohit kumar
C#
// C# Program to count pairs in an array with
// some common digit
using System;
using System.Collections.Generic;
public class GFG
{
// Store the mask frequencies
static Dictionary<int, int> freq = new Dictionary<int, int>();
// This function calculates the mask frequencies
// for every present in the array
public static void calculateMaskFrequencies(int[] arr,int n)
{
// Iterate over the array
for(int i = 0; i < n; i++)
{
int num = arr[i];
// Creating an empty mask
int mask = 0;
// Extracting every digit of the number
// and updating corresponding bit in the
// mask
while(num > 0)
{
mask = mask | (1 << (num % 10));
num /= 10;
}
// Update the frequency array
if(freq.ContainsKey(mask))
{
freq[mask]++;
}
else
{
freq.Add(mask, 1);
}
}
}
public static int countPairs(int[] arr, int n)
{
calculateMaskFrequencies(arr, n);
int numberOfPairs = 0;
// Considering every possible pair of masks
// and calculate pairs according to their
// frequencies
for(int i = 0; i < 1024; i++)
{
int x = 0;
if(freq.ContainsKey(i))
{
x = freq[i];
}
numberOfPairs += ((x) * (x - 1)) / 2;
for(int j = i + 1; j < 1024; j++)
{
int y = 0;
// if it contains a common digit
if((i & j) != 0)
{
if(freq.ContainsKey(j))
{
y = freq[j];
}
numberOfPairs += x * y;
}
}
}
return numberOfPairs;
}
// Driver Code
static public void Main ()
{
int[] arr = {10, 12, 24};
int n = arr.Length;
Console.WriteLine(countPairs(arr, n));
}
}
// This code is contributed by rag2127
JavaScript
<script>
// Javascript Program to count pairs in an array with
// some common digit
// Store the mask frequencies
let freq = new Map();
// This function calculates the mask frequencies
// for every present in the array
function calculateMaskFrequencies(arr,n)
{
// Iterate over the array
for(let i = 0; i < n; i++)
{
let num = arr[i];
// Creating an empty mask
let mask = 0;
// Extracting every digit of the number
// and updating corresponding bit in the
// mask
while(num > 0)
{
mask = mask | (1 << (num % 10));
num = Math.floor(num/10);
}
// Update the frequency array
if(freq.has(mask))
{
freq.set((mask), freq.get(mask) + 1);
}
else
{
freq.set((mask), 1);
}
}
}
// Function return the number of valid pairs
function countPairs(arr,n)
{
calculateMaskFrequencies(arr, n);
let numberOfPairs = 0;
// Considering every possible pair of masks
// and calculate pairs according to their
// frequencies
for(let i = 0; i < 1024; i++)
{
let x = 0;
if(freq.has(i))
{
x = freq.get(i);
}
numberOfPairs += Math.floor((x) * (x - 1)) / 2;
for(let j = i + 1; j < 1024; j++)
{
let y = 0;
// if it contains a common digit
if((i & j) != 0)
{
if(freq.has(j))
{
y = freq.get(j);
}
numberOfPairs += x * y;
}
}
}
return numberOfPairs;
}
// Driver Code
let arr=[10, 12, 24];
let n = arr.length;
document.write(countPairs(arr, n));
// This code is contributed by unknown2108
</script>
Time Complexity: O(N + 1024 * 1024), where N is the size of the array.
Space Complexity : O( 1 )
Similar Reads
Bitwise Algorithms
Bitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Introduction to Bitwise Algorithms - Data Structures and Algorithms Tutorial
Bit stands for binary digit. A bit is the basic unit of information and can only have one of two possible values that is 0 or 1. In our world, we usually with numbers using the decimal base. In other words. we use the digit 0 to 9 However, there are other number representations that can be quite use
15+ min read
Bitwise Operators in C
In C, bitwise operators are used to perform operations directly on the binary representations of numbers. These operators work by manipulating individual bits (0s and 1s) in a number.The following 6 operators are bitwise operators (also known as bit operators as they work at the bit-level). They are
6 min read
Bitwise Operators in Java
In Java, Operators are special symbols that perform specific operations on one or more than one operands. They build the foundation for any type of calculation or logic in programming.There are so many operators in Java, among all, bitwise operators are used to perform operations at the bit level. T
6 min read
Python Bitwise Operators
Python bitwise operators are used to perform bitwise calculations on integers. The integers are first converted into binary and then operations are performed on each bit or corresponding pair of bits, hence the name bitwise operators. The result is then returned in decimal format.Note: Python bitwis
5 min read
JavaScript Bitwise Operators
In JavaScript, a number is stored as a 64-bit floating-point number but bitwise operations are performed on a 32-bit binary number. To perform a bit-operation, JavaScript converts the number into a 32-bit binary number (signed) and performs the operation and converts back the result to a 64-bit numb
5 min read
All about Bit Manipulation
Bit Manipulation is a technique used in a variety of problems to get the solution in an optimized way. This technique is very effective from a Competitive Programming point of view. It is all about Bitwise Operators which directly works upon binary numbers or bits of numbers that help the implementa
14 min read
What is Endianness? Big-Endian & Little-Endian
Computers operate using binary code, a language made up of 0s and 1s. This binary code forms the foundation of all computer operations, enabling everything from rendering videos to processing complex algorithms. A single bit is a 0 or a 1, and eight bits make up a byte. While some data, such as cert
5 min read
Bits manipulation (Important tactics)
Prerequisites: Bitwise operators in C, Bitwise Hacks for Competitive Programming, Bit Tricks for Competitive Programming Table of Contents Compute XOR from 1 to n (direct method)Count of numbers (x) smaller than or equal to n such that n+x = n^xHow to know if a number is a power of 2?Find XOR of all
15+ min read
Easy Problems on Bit Manipulations and Bitwise Algorithms
Binary representation of a given number
Given an integer n, the task is to print the binary representation of the number. Note: The given number will be maximum of 32 bits, so append 0's to the left if the result string is smaller than 30 length.Examples: Input: n = 2Output: 00000000000000000000000000000010Input: n = 0Output: 000000000000
6 min read
Count set bits in an integer
Write an efficient program to count the number of 1s in the binary representation of an integer.Examples : Input : n = 6Output : 2Binary representation of 6 is 110 and has 2 set bitsInput : n = 13Output : 3Binary representation of 13 is 1101 and has 3 set bits[Naive Approach] - One by One CountingTh
15+ min read
Add two bit strings
Given two binary strings s1 and s2 consisting of only 0s and 1s. Find the resultant string after adding the two Binary Strings.Note: The input strings may contain leading zeros but the output string should not have any leading zeros.Examples:Input: s1 = "1101", s2 = "111"Output: 10100Explanation: "1
1 min read
Turn off the rightmost set bit
Given an integer n, turn remove turn off the rightmost set bit in it. Input: 12Output: 8Explanation : Binary representation of 12 is 00...01100. If we turn of the rightmost set bit, we get 00...01000 which is binary representation of 8Input: 7 Output: 6 Explanation : Binary representation for 7 is 0
7 min read
Rotate bits of a number
Given a 32-bit integer n and an integer d, rotate the binary representation of n by d positions in both left and right directions. After each rotation, convert the result back to its decimal representation and return both values in an array as [left rotation, right rotation].Note: A rotation (or cir
7 min read
Compute modulus division by a power-of-2-number
Given two numbers n and d where d is a power of 2 number, the task is to perform n modulo d without the division and modulo operators.Input: 6 4Output: 2 Explanation: As 6%4 = 2Input: 12 8Output: 4Explanation: As 12%8 = 4Input: 10 2Output: 0Explanation: As 10%2 = 0Approach:The idea is to leverage bi
3 min read
Find the Number Occurring Odd Number of Times
Given an array of positive integers. All numbers occur an even number of times except one number which occurs an odd number of times. Find the number in O(n) time & constant space. Examples : Input : arr = {1, 2, 3, 2, 3, 1, 3}Output : 3 Input : arr = {5, 7, 2, 7, 5, 2, 5}Output : 5 Recommended
12 min read
Program to find whether a given number is power of 2
Given a positive integer n, the task is to find if it is a power of 2 or not.Examples: Input : n = 16Output : YesExplanation: 24 = 16Input : n = 42Output : NoExplanation: 42 is not a power of 2Input : n = 1Output : YesExplanation: 20 = 1Approach 1: Using Log - O(1) time and O(1) spaceThe idea is to
12 min read
Find position of the only set bit
Given a number n containing only 1 set bit in its binary representation, the task is to find the position of the only set bit. If there are 0 or more than 1 set bits, then return -1. Note: Position of set bit '1' should be counted starting with 1 from the LSB side in the binary representation of the
8 min read
Check for Integer Overflow
Given two integers a and b. The task is to design a function that adds two integers and detects overflow during the addition. If the sum does not cause an overflow, return their sum. Otherwise, return -1 to indicate an overflow.Note: You cannot use type casting to a larger data type to check for ove
7 min read
Find XOR of two number without using XOR operator
Given two integers, the task is to find XOR of them without using the XOR operator.Examples : Input: x = 1, y = 2Output: 3Input: x = 3, y = 5Output: 6Approach - Checking each bit - O(log n) time and O(1) spaceA Simple Solution is to traverse all bits one by one. For every pair of bits, check if both
8 min read
Check if two numbers are equal without using arithmetic and comparison operators
Given two numbers, the task is to check if two numbers are equal without using Arithmetic and Comparison Operators or String functions. Method 1 : The idea is to use XOR operator. XOR of two numbers is 0 if the numbers are the same, otherwise non-zero. C++ // C++ program to check if two numbers // a
8 min read
Detect if two integers have opposite signs
Given two integers a and b, the task is to determine whether they have opposite signs. Return true if the signs of the two numbers are different and false otherwise.Examples:Input: a = -5, b = 10Output: trueExplanation: One number is negative and the other is positive, so their signs are different.I
9 min read
Swap Two Numbers Without Using Third Variable
Given two variables a and y, swap two variables without using a third variable. Examples: Input: a = 2, b = 3Output: a = 3, b = 2Input: a = 20, b = 0Output: a = 0, b = 20Input: a = 10, b = 10Output: a = 10, b = 10Table of ContentUsing Arithmetic OperatorsUsing Bitwise XORBuilt-in SwapUsing Arithmeti
6 min read
Russian Peasant (Multiply two numbers using bitwise operators)
Given two integers a and b, the task is to multiply them without using the multiplication operator. Instead of that, use the Russian Peasant Algorithm.Examples:Input: a = 2, b = 5Output: 10Explanation: Product of 2 and 5 is 10.Input: a = 6, b = 9Output: 54Explanation: Product of 6 and 9 is 54.Input:
4 min read