Count of Reverse Bitonic Substrings in a given String
Last Updated :
07 Jul, 2023
Given a string S, the task is to count the number of Reverse Bitonic Substrings in the given string.
Reverse bitonic substring: A string in which the ASCII values of the characters of the string follow any of the following patterns:
- Strictly Increasing
- Strictly decreasing
- Decreasing and then increasing
Examples:
Input: S = "bade"
Output: 10
Explanation:
All possible substrings of length 1, {"b", "a", "d”, "e"} are always reverse bitonic.
Substrings of length 2 which are reverse bitonic are {"ba", "ad", "de"}.
Substrings of length 3 which are reverse bitonic are {"bad ", "ade"}.
Only substring of length 4 which is reverse bitonic is "bade".
Therefore, the count of reverse bitonic substrings is 10.
Input: S = "abc"
Output: 6
Approach :
The approach is to generate all possible substrings of the given string and follow the steps below for each substring to solve the problem:
- Traverse the string and for each character, check if the ASCII value of the next character is smaller than the ASCII value of the current character or not.
- If at any point, the ASCII value of the next character is greater than the ASCII value of the current character, traverse from that index and for each character from now onwards, check if the ASCII value of the next character is greater than the ASCII value of the current character or not.
- If at any point, the ASCII value of the next character is smaller than the ASCII value of the current character before the end of the substring is reached, then ignore the substring.
- If the end of the substring is reached, increase count.
- After completing all the above steps for all substrings, print the final value of count.
Below is the implementation of the above approach :
C++
// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to calculate the number
// of reverse bitonic substrings
int CountsubString(char str[], int n)
{
// Stores the count
int c = 0;
// All possible lengths of substrings
for (int len = 1; len <= n; len++) {
// Starting point of a substring
for (int i = 0; i <= n - len; i++) {
// Ending point of a substring
int j = i + len - 1;
char temp = str[i], f = 0;
// Condition for reverse
// bitonic substrings of
// length 1
if (j == i) {
c++;
continue;
}
int k = i + 1;
// Check for decreasing sequence
while (temp > str[k] && k <= j) {
temp = str[k];
k++;
}
// If end of substring
// is reached
if (k > j) {
c++;
f = 2;
}
// For increasing sequence
while (temp < str[k] && k <= j
&& f != 2) {
temp = str[k];
k++;
}
// If end of substring
// is reached
if (k > j && f != 2) {
c++;
f = 0;
}
}
}
// Return the number
// of bitonic substrings
return c;
}
// Driver Code
int main()
{
char str[] = "bade";
cout << CountsubString(str, strlen(str));
return 0;
}
Java
// Java program to implement
// the above approach
class GFG{
// Function to calculate the number
// of reverse bitonic substrings
public static int CountsubString(char[] str,
int n)
{
// Stores the count
int c = 0;
// All possible lengths of substrings
for(int len = 1; len <= n; len++)
{
// Starting point of a substring
for(int i = 0; i <= n - len; i++)
{
// Ending point of a substring
int j = i + len - 1;
char temp = str[i], f = 0;
// Condition for reverse
// bitonic substrings of
// length 1
if (j == i)
{
c++;
continue;
}
int k = i + 1;
// Check for decreasing sequence
while (temp > str[k] && k <= j)
{
temp = str[k];
k++;
}
// If end of substring
// is reached
if (k > j)
{
c++;
f = 2;
}
// For increasing sequence
while (k <= j && temp < str[k] &&
f != 2)
{
temp = str[k];
k++;
}
// If end of substring
// is reached
if (k > j && f != 2)
{
c++;
f = 0;
}
}
}
// Return the number
// of bitonic substrings
return c;
}
// Driver code
public static void main(String[] args)
{
char str[] = { 'b', 'a', 'd', 'e' };
System.out.println(CountsubString(
str, str.length));
}
}
// This code is contributed by divyeshrabadiya07
Python3
# Python3 program to implement
# the above approach
# Function to calculate the number
# of reverse bitonic substrings
def CountsubString(strr, n):
# Stores the count
c = 0
# All possible lengths of substrings
for len in range(n + 1):
# Starting point of a substring
for i in range(n - len):
# Ending point of a substring
j = i + len - 1
temp = strr[i]
f = 0
# Condition for reverse
# bitonic substrings of
# length 1
if (j == i):
c += 1
continue
k = i + 1
# Check for decreasing sequence
while (k <= j and temp > strr[k]):
temp = strr[k]
k += 1
# If end of substring
# is reache
if (k > j):
c += 1
f = 2
# For increasing sequence
while (k <= j and f != 2 and
temp < strr[k]):
temp = strr[k]
k += 1
# If end of substring
# is reached
if (k > j and f != 2):
c += 1
f = 0
# Return the number
# of bitonic substrings
return c
# Driver Code
if __name__ == '__main__':
strr = "bade"
print(CountsubString(strr, len(strr)))
# This code is contributed by mohit kumar 29
C#
// C# program to implement
// the above approach
using System;
class GFG{
// Function to calculate the number
// of reverse bitonic substrings
public static int CountsubString(char[] str,
int n)
{
// Stores the count
int c = 0;
// All possible lengths of substrings
for(int len = 1; len <= n; len++)
{
// Starting point of a substring
for(int i = 0; i <= n - len; i++)
{
// Ending point of a substring
int j = i + len - 1;
char temp = str[i], f = '0';
// Condition for reverse
// bitonic substrings of
// length 1
if (j == i)
{
c++;
continue;
}
int k = i + 1;
// Check for decreasing sequence
while (temp > str[k] && k <= j)
{
temp = str[k];
k++;
}
// If end of substring
// is reached
if (k > j)
{
c++;
f = '2';
}
// For increasing sequence
while (k <= j && temp < str[k] &&
f != '2')
{
temp = str[k];
k++;
}
// If end of substring
// is reached
if (k > j && f != 2)
{
c++;
f = '0';
}
}
}
// Return the number
// of bitonic substrings
return c;
}
// Driver code
public static void Main(String[] args)
{
char []str = { 'b', 'a', 'd', 'e' };
Console.WriteLine(CountsubString(
str, str.Length) - 1);
}
}
// This code is contributed by amal kumar choubey
JavaScript
<script>
// Javascript Program to implement
// the above approach
// Function to calculate the number
// of reverse bitonic substrings
function CountsubString(str, n)
{
// Stores the count
var c = 0;
// All possible lengths of substrings
for (var len = 1; len <= n; len++) {
// Starting point of a substring
for (var i = 0; i <= n - len; i++) {
// Ending point of a substring
var j = i + len - 1;
var temp = str[i], f = 0;
// Condition for reverse
// bitonic substrings of
// length 1
if (j == i) {
c++;
continue;
}
var k = i + 1;
// Check for decreasing sequence
while (temp > str[k] && k <= j) {
temp = str[k];
k++;
}
// If end of substring
// is reached
if (k > j) {
c++;
f = 2;
}
// For increasing sequence
while (temp < str[k] && k <= j
&& f != 2) {
temp = str[k];
k++;
}
// If end of substring
// is reached
if (k > j && f != 2) {
c++;
f = 0;
}
}
}
// Return the number
// of bitonic substrings
return c;
}
// Driver Code
var str = "bade".split('');
document.write( CountsubString(str, str.length));
// This code is contributed by importantly.
</script>
Output:
10
Time Complexity: O(N^3)
Auxiliary Space: O(1)
Similar Reads
Check if a given string is a Reverse Bitonic String or not Given a string str, the task is to check if that string is a Reverse Bitonic string or not. If the string str is reverse Bitonic string, then print "YES". Otherwise, print "NO". A Reverse Bitonic String is a string in which the characters are arranged in decreasing order followed by increasing order
6 min read
Count of bitonic substrings from the given string Given a string str, the task is to count all the bitonic substrings of the given string. A bitonic substring is a substring of the given string in which elements are either strictly increasing or strictly decreasing, or first increasing and then decreasing. Examples: Input: str = "bade"Output: 8Expl
7 min read
Count of increasing substrings in given String Given string str of length N, the task is to print the number of substrings in which every character's ASCII value is greater or equal to the ASCII value of the previous character. The substrings must at least be of length 2. Example: Input: str = "bcdabc"Output: 6Explanation: The 6 substrings with
7 min read
Count Palindromic Substrings in a Binary String Given a binary string S i.e. which consists only of 0's and 1's. Calculate the number of substrings of S which are palindromes. String S contains at most two 1's. Examples: Input: S = "011"Output: 4Explanation: "0", "1", "1" and "11" are the palindromic substrings. Input: S = "0" Output: 1Explanatio
7 min read
Count of substrings that start and end with 1 in given Binary String Given a binary string s, the task is to count all substrings that start and end with the character '1'. A valid substring must have both its first and last characters as '1', and can include one or more number of characters in between.Examples:Input: s = "00100101"Output: 3Explanation: Valid substri
7 min read
Count of substrings of a given Binary string with all characters same Given binary string str containing only 0 and 1, the task is to find the number of sub-strings containing only 1s and 0s respectively, i.e all characters same. Examples: Input: str = â011âOutput: 4Explanation: Three sub-strings are "1", "1", "11" which have only 1 in them, and one substring is there
10 min read