Count of Pairs with given sum in Rotated Sorted Array
Last Updated :
19 Sep, 2023
Given an array arr[] of distinct elements size N that is sorted and then around an unknown point, the task is to count the number of pairs in the array having a given sum X.
Examples:
Input: arr[] = {11, 15, 26, 38, 9, 10}, X = 35
Output: 1
Explanation: There is a pair (26, 9) with sum 35
Input: arr[] = {11, 15, 6, 7, 9, 10}, X = 16
Output: 2
Approach: The idea is similar to what is mentioned below.
First find the largest element in an array which is the pivot point also and the element just after the largest is the smallest element. Once we have the indices of the largest and the smallest elements, we use a similar meet-in-middle algorithm (as discussed here in method 1) to count the number of pairs that sum up to X. Indices are incremented and decremented in a rotational manner using modular arithmetic.
Follow the below illustration for a better understanding.
Illustration:
Let us take an example arr[]={11, 15, 6, 7, 9, 10}, X = 16, count=0;
Initially pivot = 1,
l = 2, r = 1:
=> arr[2] + arr[1] = 6 + 15 = 21, which is > 16
=> So decrement r = ( 6 + 1 - 1) % 6, r = 0
l = 2, r = 0:
=> arr[2] + arr[0] = 17 which is > 16,
=> So decrement r = (6 + 0 - 1) % 6, r = 5
l = 2, r = 5:
=> arr[2] + arr[5] = 16 which is equal to 16,
=> Hence count = 1 and
=> Decrement r = (6 + 5 - 1) % 6, r = 4 and increment l = (2 + 1) % 6, l = 3
l = 3, r = 4:
=> arr[3] + arr[4] = 16
=> Hence increment count. So count = 2
=> So decrement r = (6 + 4 - 1) % 6, r = 3 and increment l = 4
l = 4, r = 3:
=> l > r. So break the loop.
So we get count = 2
Follow the below steps to implement the idea:
- We will run a for loop from 0 to N-1, to find out the pivot point. Set the left pointer(l) to the smallest value and
the right pointer(r) to the highest value. - To restrict the circular movement within the array, apply the modulo operation by the size of the array.
- While l ! = r, keep checking if arr[l] + arr[r] = sum.
- If arr[l] + arr[r] > sum, update r=(N+r-1) % N.
- If arr[l] + arr[r] < sum, update l=(l+1) % N.
- If arr[l] + arr[r] = sum, increment count. Also increment l and decrement r.
Below is the implementation of the above idea.
C++
// C++ program to find number of pairs with
// a given sum in a sorted and rotated array.
#include <bits/stdc++.h>
using namespace std;
// This function returns count of number of pairs
// with sum equals to x.
int pairsInSortedRotated(int arr[], int n, int x)
{
// Find the pivot element. Pivot element
// is largest element of array.
int i;
for (i = 0; i < n - 1; i++)
if (arr[i] > arr[i + 1])
break;
// l is index of smallest element.
int l = (i + 1) % n;
// r is index of largest element.
int r = i;
// Variable to store count of number
// of pairs.
int cnt = 0;
// Find sum of pair formed by arr[l] and
// and arr[r] and update l, r and cnt
// accordingly.
while (l != r) {
// If we find a pair with sum x, then
// increment cnt, move l and r to
// next element.
if (arr[l] + arr[r] == x) {
cnt++;
// This condition is required to
// be checked, otherwise l and r
// will cross each other and loop
// will never terminate.
if (l == (r - 1 + n) % n) {
return cnt;
}
l = (l + 1) % n;
r = (r - 1 + n) % n;
}
// If current pair sum is less, move to
// the higher sum side.
else if (arr[l] + arr[r] < x)
l = (l + 1) % n;
// If current pair sum is greater, move
// to the lower sum side.
else
r = (n + r - 1) % n;
}
return cnt;
}
/* Driver program to test above function */
int main()
{
int arr[] = { 11, 15, 6, 7, 9, 10 };
int X = 16;
int N = sizeof(arr) / sizeof(arr[0]);
cout << pairsInSortedRotated(arr, N, X);
return 0;
}
Java
// Java program to find
// number of pairs with
// a given sum in a sorted
// and rotated array.
import java.io.*;
class GFG {
// This function returns
// count of number of pairs
// with sum equals to x.
static int pairsInSortedRotated(int arr[], int n, int x)
{
// Find the pivot element.
// Pivot element is largest
// element of array.
int i;
for (i = 0; i < n - 1; i++)
if (arr[i] > arr[i + 1])
break;
// l is index of
// smallest element.
int l = (i + 1) % n;
// r is index of
// largest element.
int r = i;
// Variable to store
// count of number
// of pairs.
int cnt = 0;
// Find sum of pair
// formed by arr[l]
// and arr[r] and
// update l, r and
// cnt accordingly.
while (l != r) {
// If we find a pair with
// sum x, then increment
// cnt, move l and r to
// next element.
if (arr[l] + arr[r] == x) {
cnt++;
// This condition is required
// to be checked, otherwise
// l and r will cross each
// other and loop will never
// terminate.
if (l == (r - 1 + n) % n) {
return cnt;
}
l = (l + 1) % n;
r = (r - 1 + n) % n;
}
// If current pair sum
// is less, move to
// the higher sum side.
else if (arr[l] + arr[r] < x)
l = (l + 1) % n;
// If current pair sum
// is greater, move
// to the lower sum side.
else
r = (n + r - 1) % n;
}
return cnt;
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 11, 15, 6, 7, 9, 10 };
int X = 16;
int N = arr.length;
System.out.println(pairsInSortedRotated(arr, N, X));
}
}
// This code is contributed by ajit
Python3
# Python program to find
# number of pairs with
# a given sum in a sorted
# and rotated array.
# This function returns
# count of number of pairs
# with sum equals to x.
def pairsInSortedRotated(arr, n, x):
# Find the pivot element.
# Pivot element is largest
# element of array.
for i in range(n):
if arr[i] > arr[i + 1]:
break
# l is index of
# smallest element.
l = (i + 1) % n
# r is index of
# largest element.
r = i
# Variable to store
# count of number
# of pairs.
cnt = 0
# Find sum of pair
# formed by arr[l]
# and arr[r] and
# update l, r and
# cnt accordingly.
while (l != r):
# If we find a pair
# with sum x, then
# increment cnt, move
# l and r to next element.
if arr[l] + arr[r] == x:
cnt += 1
# This condition is
# required to be checked,
# otherwise l and r will
# cross each other and
# loop will never terminate.
if l == (r - 1 + n) % n:
return cnt
l = (l + 1) % n
r = (r - 1 + n) % n
# If current pair sum
# is less, move to
# the higher sum side.
elif arr[l] + arr[r] < x:
l = (l + 1) % n
# If current pair sum
# is greater, move to
# the lower sum side.
else:
r = (n + r - 1) % n
return cnt
# Driver Code
arr = [11, 15, 6, 7, 9, 10]
X = 16
N = len(arr)
print(pairsInSortedRotated(arr, N, X))
# This code is contributed by ChitraNayal
C#
// C# program to find
// number of pairs with
// a given sum in a sorted
// and rotated array.
using System;
class GFG {
// This function returns
// count of number of pairs
// with sum equals to x.
static int pairsInSortedRotated(int[] arr, int n, int x)
{
// Find the pivot element.
// Pivot element is largest
// element of array.
int i;
for (i = 0; i < n - 1; i++)
if (arr[i] > arr[i + 1])
break;
// l is index of
// smallest element.
int l = (i + 1) % n;
// r is index of
// largest element.
int r = i;
// Variable to store
// count of number
// of pairs.
int cnt = 0;
// Find sum of pair
// formed by arr[l]
// and arr[r] and
// update l, r and
// cnt accordingly.
while (l != r) {
// If we find a pair with
// sum x, then increment
// cnt, move l and r to
// next element.
if (arr[l] + arr[r] == x) {
cnt++;
// This condition is required
// to be checked, otherwise
// l and r will cross each
// other and loop will never
// terminate.
if (l == (r - 1 + n) % n) {
return cnt;
}
l = (l + 1) % n;
r = (r - 1 + n) % n;
}
// If current pair sum
// is less, move to
// the higher sum side.
else if (arr[l] + arr[r] < x)
l = (l + 1) % n;
// If current pair sum
// is greater, move
// to the lower sum side.
else
r = (n + r - 1) % n;
}
return cnt;
}
// Driver Code
static public void Main()
{
int[] arr = { 11, 15, 6, 7, 9, 10 };
int X = 16;
int N = arr.Length;
Console.WriteLine(
pairsInSortedRotated(arr, N, X));
}
}
// This code is contributed by akt_mit
PHP
<?php
// PHP program to find number
// of pairs with a given sum
// in a sorted and rotated array.
// This function returns count
// of number of pairs with sum
// equals to x.
function pairsInSortedRotated($arr,
$n, $x)
{
// Find the pivot element.
// Pivot element is largest
// element of array.
$i;
for ($i = 0; $i < $n - 1; $i++)
if ($arr[$i] > $arr[$i + 1])
break;
// l is index of
// smallest element.
$l = ($i + 1) % $n;
// r is index of
// largest element.
$r = $i;
// Variable to store
// count of number
// of pairs.
$cnt = 0;
// Find sum of pair formed
// by arr[l] and arr[r] and
// update l, r and cnt
// accordingly.
while ($l != $r)
{
// If we find a pair with
// sum x, then increment
// cnt, move l and r to
// next element.
if ($arr[$l] + $arr[$r] == $x)
{
$cnt++;
// This condition is required
// to be checked, otherwise l
// and r will cross each other
// and loop will never terminate.
if($l == ($r - 1 + $n) % $n)
{
return $cnt;
}
$l = ($l + 1) % $n;
$r = ($r - 1 + $n) % $n;
}
// If current pair sum
// is less, move to
// the higher sum side.
else if ($arr[$l] + $arr[$r] < $x)
$l = ($l + 1) % $n;
// If current pair sum
// is greater, move to
// the lower sum side.
else
$r = ($n + $r - 1) % $n;
}
return $cnt;
}
// Driver Code
$arr = array(11, 15, 6,
7, 9, 10);
$X = 16;
$N = sizeof($arr) / sizeof($arr[0]);
echo pairsInSortedRotated($arr, $N, $X);
// This code is contributed by ajit
?>
JavaScript
<script>
// Javascript program to find
// number of pairs with
// a given sum in a sorted
// and rotated array.
// This function returns
// count of number of pairs
// with sum equals to x.
function pairsInSortedRotated(arr, n, x)
{
// Find the pivot element.
// Pivot element is largest
// element of array.
let i;
for (i = 0; i < n - 1; i++)
if (arr[i] > arr[i + 1])
break;
// l is index of
// smallest element.
let l = (i + 1) % n;
// r is index of
// largest element.
let r = i;
// Variable to store
// count of number
// of pairs.
let cnt = 0;
// Find sum of pair
// formed by arr[l]
// and arr[r] and
// update l, r and
// cnt accordingly.
while (l != r)
{
// If we find a pair with
// sum x, then increment
// cnt, move l and r to
// next element.
if (arr[l] + arr[r] == x)
{
cnt++;
// This condition is required
// to be checked, otherwise
// l and r will cross each
// other and loop will never
// terminate.
if(l == (r - 1 + n) % n)
{
return cnt;
}
l = (l + 1) % n;
r = (r - 1 + n) % n;
}
// If current pair sum
// is less, move to
// the higher sum side.
else if (arr[l] + arr[r] < x)
l = (l + 1) % n;
// If current pair sum
// is greater, move
// to the lower sum side.
else
r = (n + r - 1) % n;
}
return cnt;
}
// Driver Code
let arr = [11, 15, 6, 7, 9, 10];
let X = 16;
let N = arr.length;
document.write(pairsInSortedRotated(arr, N, X));
// This code is contributed by rag2127
</script>
Time Complexity: O(N). As we are performing linear operations on an array.
Auxiliary Space: O(1). As constant extra space is used.
This method is suggested by Nikhil Jindal.
Similar Reads
2 Sum - Count Pairs with given Sum in Sorted Array
Given a sorted array arr[] and an integer target, the task is to find the number of pairs in the array whose sum is equal to target.Examples: Input: arr[] = [-1, 1, 5, 5, 7], target = 6Output: 3Explanation: Pairs with sum 6 are (1, 5), (1, 5) and (-1, 7). Input: arr[] = [1, 1, 1, 1], target = 2Outpu
9 min read
Count of pairs in given Array having same ratio
Given an array arr[] consisting of N pairs of the form {A, B}, the task is to count the pairs of indices (i, j) such that the ratio of pairs of arr[i] and arr[j] are the same.Examples:Input: arr[] = {{2, 6}, {1, 3}, {8, 24}}Output: 3Explanation:Following are the pairs of indices whose ratios are the
12 min read
Count all possible pairs in given Array with product K
Given an integer array arr[] of size N and a positive integer K, the task is to count all the pairs in the array with a product equal to K. Examples: Input: arr[] = {1, 2, 16, 4, 4, 4, 8 }, K=16Output: 5Explanation: Possible pairs are (1, 16), (2, 8), (4, 4), (4, 4), (4, 4) Input: arr[] = {1, 10, 20
11 min read
Count of adjacent pairs in given Array with even sum
Given an array arr[] of N integers, the task is to find the count of pairs of adjacent elements whose sum is even where each element can belong to at most one pair. Example: Input: arr[] = {1, 12, 1, 3, 5}Output: 1Explanation: 1 pair can be formed with arr[3] and arr[4]. Input: arr[] = {1, 2, 3, 4,
4 min read
3 Sum - Count Triplets With Given Sum In Sorted Array
Given a sorted array arr[] and a target value, the task is to find the count of triplets present in the given array having sum equal to the given target. More specifically, the task is to count triplets (i, j, k) of valid indices, such that arr[i] + arr[j] + arr[k] = target and i < j < k.Examp
10 min read
Pair Sum in a Sorted and Rotated Array
Given an array arr[] of size n, which is sorted and then rotated around an unknown pivot, the task is to check whether there exists a pair of elements in the array whose sum is equal to a given target value.Examples : Input: arr[] = [11, 15, 6, 8, 9, 10], target = 16Output: trueExplanation: There is
10 min read
Count pairs of indices with a specific property in an Array
Given an array a[] of size n containing only non-negative integers, and an integer k, the task is to find the number of pairs of indices (i, j) such that i < j and k * a[i] ⤠a[j]. Examples: Input: a[] = {3, 5, 2, 4}, n = 4, k = 2Output: 6Explanation: The pairs satisfying the condition are: (1, 3
4 min read
Count subarrays with non-zero sum in the given Array
Given an array arr[] of size N, the task is to count the total number of subarrays for the given array arr[] which have a non-zero-sum.Examples: Input: arr[] = {-2, 2, -3} Output: 4 Explanation: The subarrays with non zero sum are: [-2], [2], [2, -3], [-3]. All possible subarray of the given input a
7 min read
Count of distinct pair sum in given Array
Given an array arr[] of size N, the task is to find the total number of unique pair sums possible from the array elements. Examples: Input: arr[] = {6, 1, 4, 3}Output: 5Explanation: All pair possible are {6, 1}, {6, 4}, {6, 3}, {1, 4}, {1, 3}, {4, 3}. Sums of these pairs are 7, 10, 9, 5, 4, 7. So un
4 min read
2 Sum - Count pairs with given sum
Given an array arr[] of n integers and a target value, the task is to find the number of pairs of integers in the array whose sum is equal to target.Examples: Input: arr[] = {1, 5, 7, -1, 5}, target = 6Output: 3Explanation: Pairs with sum 6 are (1, 5), (7, -1) & (1, 5). Input: arr[] = {1, 1, 1,
9 min read