Count of K length subarrays containing only 1s in given Binary String | Set 2
Last Updated :
23 Jul, 2025
Given binary string str, the task is to find the count of K length subarrays containing only 1s.
Examples
Input: str = "0101000", K=1
Output: 2
Explanation: 0101000 -> There are 2 subarrays of length 1 containing only 1s.
Input: str = "11111001", K=3
Output: 3
Approach: The given problem can also be solved by using the Sliding Window technique. Create a window of size K initially with the count of 1s from range 0 to K-1. Then traverse the string from index 1 to N-1 and subtract the value of i-1 and add the value of i+K to the current count. Here if the current count is equal to K, increment the possible count of subarrays.
Below is the implementation of the above approach.
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the count of all possible
// k length subarrays
int get(string s, int k)
{
int n = s.length();
int cntOf1s = 0;
for (int i = 0; i < k; i++)
if (s[i] == '1')
cntOf1s++;
int ans = cntOf1s == k ? 1 : 0;
for (int i = 1; i < n; i++) {
cntOf1s = cntOf1s - (s[i - 1] - '0')
+ (s[i + k - 1] - '0');
if (cntOf1s == k)
ans++;
}
return ans;
}
// Driver code
int main()
{
string str = "0110101110";
int K = 2;
cout << get(str, K) << endl;
return 0;
}
Java
// Java code to implement above approach
import java.util.*;
public class GFG {
// Function to find the count of all possible
// k length subarrays
static int get(String s, int k)
{
int n = s.length();
int cntOf1s = 0;
for (int i = 0; i < k; i++) {
if (s.charAt(i) == '1') {
cntOf1s++;
}
}
int ans = cntOf1s == k ? 1 : 0;
for (int i = 1; i < n; i++) {
if(i + k - 1 < n) {
cntOf1s = cntOf1s - (s.charAt(i - 1) - '0')
+ (s.charAt(i + k - 1) - '0');
}
if (cntOf1s == k)
ans++;
}
return ans;
}
// Driver code
public static void main(String args[])
{
String str = "0110101110";
int K = 2;
System.out.println(get(str, K));
}
}
// This code is contributed by Samim Hossain Mondal.
Python3
# Python code to implement above approach
# Function to find the count of all possible
# k length subarrays
def get(s, k):
n = len(s);
cntOf1s = 0;
for i in range(0,k):
if (s[i] == '1'):
cntOf1s += 1;
ans = i if (cntOf1s == k) else 0;
for i in range(1, n):
if (i + k - 1 < n):
cntOf1s = cntOf1s - (ord(s[i - 1]) - ord('0')) + (ord(s[i + k - 1]) - ord('0'));
if (cntOf1s == k):
ans += 1;
return ans;
# Driver code
if __name__ == '__main__':
str = "0110101110";
K = 2;
print(get(str, K));
# This code is contributed by 29AjayKumar
C#
// C# code to implement above approach
using System;
public class GFG {
// Function to find the count of all possible
// k length subarrays
static int get(string s, int k)
{
int n = s.Length;
int cntOf1s = 0;
for (int i = 0; i < k; i++) {
if (s[i] == '1') {
cntOf1s++;
}
}
int ans = cntOf1s == k ? 1 : 0;
for (int i = 1; i < n; i++) {
if (i + k - 1 < n) {
cntOf1s = cntOf1s - (s[i - 1] - '0')
+ (s[i + k - 1] - '0');
}
if (cntOf1s == k)
ans++;
}
return ans;
}
// Driver code
public static void Main()
{
string str = "0110101110";
int K = 2;
Console.WriteLine(get(str, K));
}
}
// This code is contributed by ukasp.
JavaScript
<script>
// JavaScript code for the above approach
// Function to find the count of all possible
// k length subarrays
function get(s, k)
{
let n = s.length;
let cntOf1s = 0;
for (let i = 0; i < k; i++)
if (s[i] == '1')
cntOf1s++;
let ans = cntOf1s == k ? 1 : 0;
for (let i = 1; i < n; i++)
{
cntOf1s = cntOf1s - (s[i - 1] - '0')
+ (s[i + k - 1] - '0');
if (cntOf1s == k)
ans++;
}
return ans;
}
// Driver code
let str = "0110101110";
let K = 2;
document.write(get(str, K) + '<br>')
// This code is contributed by Potta Lokesh
</script>
Time Complexity: O(N), Where N is the length of the string.
Auxiliary Space: O(1).
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem