Count of distinct index pair (i, j) such that element sum of First Array is greater
Last Updated :
26 Oct, 2021
Given two arrays a[] and b[], both of size N. The task is to count the number of distinct pairs such that (a[i] + a[j] ) > ( b[i] + b[j] ) subject to condition that (j > i).
Examples:
Input: N = 5, a[] = {1, 2, 3, 4, 5}, b[] = {2, 5, 6, 1, 9}
Output: 1
Explanation:
Only one such pair exists and that is (0, 3).
a[0] = 1, a[3] = 4 and a[0] + a[3] = 1 + 4 = 5.
b[0] = 2, b[3] = 1 and b[0] + b[3] = 2 + 1 = 3.
Clearly, 5 > 3 and j > i. Thus (0, 3) is a possible pair.
Input: N = 5, a[] = {2, 4, 2, 7, 8}, b[] = {1, 3, 6, 4, 5}
Output: 6
Naive Approach:
The simplest way is to iterate through every possible pair and if it satisfies the condition, then increment the count. Then, return the count as the answer.
Below is the implementation of the above approach:
C++
// C++ program for the above problem
#include <bits/stdc++.h>
using namespace std;
// function to find the number of
// pairs satisfying the given cond.
int count_pairs(int a[],
int b[], int N)
{
// variables used for traversal
int i, j;
// count variable to store the
// count of possible pairs
int count = 0;
// Nested loop to find out the
// possible pairs
for (i = 0; i < (N - 1); i++) {
for (j = (i + 1); j < N; j++) {
// Check if the given
// condition is satisfied
// or not. If yes then
// increment the count.
if ((a[i] + a[j])
> (b[i] + b[j])) {
count++;
}
}
}
// Return the count value
return count;
}
// Driver Code
int main()
{
// Size of the arrays
int N = 5;
// Initialise the arrays
int a[N] = { 1, 2, 3, 4, 5 };
int b[N] = { 2, 5, 6, 1, 9 };
// function call that returns
// the count of possible pairs
cout << count_pairs(a, b, N)
<< endl;
return 0;
}
Java
// Java program for the above problem
class GFG{
// function to find the number of
// pairs satisfying the given cond.
static int count_pairs(int []a,
int b[], int N)
{
// variables used for traversal
int i, j;
// count variable to store the
// count of possible pairs
int count = 0;
// Nested loop to find out the
// possible pairs
for (i = 0; i < (N - 1); i++)
{
for (j = (i + 1); j < N; j++)
{
// Check if the given
// condition is satisfied
// or not. If yes then
// increment the count.
if ((a[i] + a[j]) > (b[i] + b[j]))
{
count++;
}
}
}
// Return the count value
return count;
}
// Driver Code
public static void main(String[] args)
{
// Size of the arrays
int N = 5;
// Initialise the arrays
int a[] = new int[]{ 1, 2, 3, 4, 5 };
int b[] = new int[]{ 2, 5, 6, 1, 9 };
// function call that returns
// the count of possible pairs
System.out.println(count_pairs(a, b, N));
}
}
// This code is contributed by rock_cool
Python3
# Python3 program for the above problem
# function to find the number of
# pairs satisfying the given cond.
def count_pairs(a, b, N):
# count variable to store the
# count of possible pairs
count = 0;
# Nested loop to find out the
# possible pairs
for i in range(0, N - 1):
for j in range(i + 1, N):
# Check if the given
# condition is satisfied
# or not. If yes then
# increment the count.
if ((a[i] + a[j]) > (b[i] + b[j])):
count += 1;
# Return the count value
return count;
# Driver Code
# Size of the arrays
N = 5;
# Initialise the arrays
a = [ 1, 2, 3, 4, 5 ];
b = [ 2, 5, 6, 1, 9 ];
# function call that returns
# the count of possible pairs
print(count_pairs(a, b, N)
# This code is contributed by Code_Mech
C#
// C# program for the above problem
using System;
class GFG{
// function to find the number of
// pairs satisfying the given cond.
static int count_pairs(int []a,
int []b, int N)
{
// variables used for traversal
int i, j;
// count variable to store the
// count of possible pairs
int count = 0;
// Nested loop to find out the
// possible pairs
for (i = 0; i < (N - 1); i++)
{
for (j = (i + 1); j < N; j++)
{
// Check if the given
// condition is satisfied
// or not. If yes then
// increment the count.
if ((a[i] + a[j]) > (b[i] + b[j]))
{
count++;
}
}
}
// Return the count value
return count;
}
// Driver Code
public static void Main()
{
// Size of the arrays
int N = 5;
// Initialise the arrays
int []a = new int[]{ 1, 2, 3, 4, 5 };
int []b = new int[]{ 2, 5, 6, 1, 9 };
// function call that returns
// the count of possible pairs
Console.Write(count_pairs(a, b, N));
}
}
// This code is contributed by Code_Mech
JavaScript
<script>
// Javascript program for the above problem
// function to find the number of
// pairs satisfying the given cond.
function count_pairs(a, b, N)
{
// Variables used for traversal
let i, j;
// count variable to store the
// count of possible pairs
let count = 0;
// Nested loop to find out the
// possible pairs
for(i = 0; i < (N - 1); i++)
{
for(j = (i + 1); j < N; j++)
{
// Check if the given
// condition is satisfied
// or not. If yes then
// increment the count.
if ((a[i] + a[j]) >
(b[i] + b[j]))
{
count++;
}
}
}
// Return the count value
return count;
}
// Driver code
// Size of the arrays
let N = 5;
// Initialise the arrays
let a = [ 1, 2, 3, 4, 5 ];
let b = [ 2, 5, 6, 1, 9 ];
// Function call that returns
// the count of possible pairs
document.write(count_pairs(a, b, N));
// This code is contributed by divyesh072019
</script>
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach:
Follow the steps below to solve the problem:
- Re-arrange the given inequality as:
=> a[i] + a[j] > b[i] + b[j]
=> a[i] - b[i] + a[j] - b[j] > 0
- Initialize another array c[ ] of size N that stores the values of a[i] - b[i].
- Sort the array c[ ].
- Initialise an answer variable to 0. Iterate over the array c[ ].
- For every index i in the array c[ ] do the following operations:
- If c[i] <= 0, simply continue.
- If c[i] > 0, calculate the minimum index position and store the value in a variable pos such that c[pos] + c[i] > 0. The value of pos can be easily found using lower_bound function in C++ STL.
- Add (i - pos) to the answer.
Illustration:
- N = 5, a[] = {1, 2, 3, 4, 5}, b[] = {2, 5, 6, 1, 9}
- The array c[] for this example will be c[] = {-1, -3, -3, 3, -4}
- After sorting, array c[] = {-4, -3, -3, -1, 3}
- The first and only positive value of array c[] is found at index 4.
- pos = lower_bound(-c[4] + 1) = lower_bound(-2) = 3.
- Count of possible pairs = i - pos = 4 - 3 = 1.
Note: Had there been more than one positive number found in the array c[], then find out the pos for each and every positive value in c[] and add the value of i - pos to the count.
Below is the implementation of the above approach:
C++
// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the number
// of pairs.
int numberOfPairs(int* a,
int* b, int n)
{
// Array c[] where
// c[i] = a[i] - b[i]
int c[n];
for (int i = 0; i < n; i++) {
c[i] = a[i] - b[i];
}
// Sort the array c
sort(c, c + n);
// Initialise answer as 0
int answer = 0;
// Iterate from index
// 0 to n - 1
for (int i = 1; i < n; i++) {
// If c[i] <= 0 then
// in the sorted array
// c[i] + c[pos] can never
// greater than 0
// where pos < i
if (c[i] <= 0)
continue;
// Find the minimum index
// such that c[i] + c[j] > 0
// which is equivalent to
// c[j] >= - c[i] + 1
int pos = lower_bound(c, c + n,
-c[i] + 1)
- c;
// Add ( i - pos) to answer
answer += (i - pos);
}
// return the answer
return answer;
}
// Driver code
int32_t main()
{
// Number of elements
// in a and b
int n = 5;
// array a
int a[] = { 1, 2, 3, 4, 5 };
// array b
int b[] = { 2, 5, 6, 1, 9 };
cout << numberOfPairs(a, b, n)
<< endl;
return 0;
}
Java
// Java program of the above approach
import java.util.*;
class GFG{
// Function to find the number
// of pairs.
static int numberOfPairs(int[] a,
int[] b, int n)
{
// Array c[] where
// c[i] = a[i] - b[i]
int c[] = new int[n];
for(int i = 0; i < n; i++)
{
c[i] = a[i] - b[i];
}
// Sort the array c
Arrays.sort(c);
// Initialise answer as 0
int answer = 0;
// Iterate from index
// 0 to n - 1
for(int i = 1; i < n; i++)
{
// If c[i] <= 0 then
// in the sorted array
// c[i] + c[pos] can never
// greater than 0
// where pos < i
if (c[i] <= 0)
continue;
// Which is equivalent to
// c[j] >= - c[i] + 1
int pos = -1;
for(int j = 0; j < n; j++)
{
if (c[i] + c[j] > 0)
{
pos = j;
break;
}
}
// Add (i - pos) to answer
answer += (i - pos);
}
// Return the answer
return answer;
}
// Driver code
public static void main (String[] args)
{
// Number of elements
// in a and b
int n = 5;
// array a
int a[] = { 1, 2, 3, 4, 5 };
// array b
int b[] = { 2, 5, 6, 1, 9 };
System.out.println(numberOfPairs(a, b, n));
}
}
// This code is contributed by offbeat
Python3
# Python3 program of the above approach
from bisect import bisect_left
# Function to find the number
# of pairs.
def numberOfPairs(a, b, n):
# Array c[] where
# c[i] = a[i] - b[i]
c = [0 for i in range(n)]
for i in range(n):
c[i] = a[i] - b[i]
# Sort the array c
c = sorted(c)
# Initialise answer as 0
answer = 0
# Iterate from index
# 0 to n - 1
for i in range(1, n):
# If c[i] <= 0 then in the
# sorted array c[i] + c[pos]
# can never greater than 0
# where pos < i
if (c[i] <= 0):
continue
# Find the minimum index
# such that c[i] + c[j] > 0
# which is equivalent to
# c[j] >= - c[i] + 1
pos = bisect_left(c, -c[i] + 1)
# Add ( i - pos) to answer
answer += (i - pos)
# Return the answer
return answer
# Driver code
if __name__ == '__main__':
# Number of elements
# in a and b
n = 5
# Array a
a = [ 1, 2, 3, 4, 5 ]
# Array b
b = [ 2, 5, 6, 1, 9 ]
print(numberOfPairs(a, b, n))
# This code is contributed by mohit kumar 29
C#
// C# program of the above approach
using System;
class GFG{
// Function to find the number
// of pairs.
static int numberOfPairs(int[] a,
int[] b, int n)
{
// Array c[] where
// c[i] = a[i] - b[i]
int[] c = new int[n];
for(int i = 0; i < n; i++)
{
c[i] = a[i] - b[i];
}
// Sort the array c
Array.Sort(c);
// Initialise answer as 0
int answer = 0;
// Iterate from index
// 0 to n - 1
for(int i = 1; i < n; i++)
{
// If c[i] <= 0 then
// in the sorted array
// c[i] + c[pos] can never
// greater than 0
// where pos < i
if (c[i] <= 0)
continue;
// Which is equivalent to
// c[j] >= - c[i] + 1
int pos = -1;
for(int j = 0; j < n; j++)
{
if (c[i] + c[j] > 0)
{
pos = j;
break;
}
}
// Add (i - pos) to answer
answer += (i - pos);
}
// Return the answer
return answer;
}
// Driver Code
static void Main()
{
// Number of elements
// in a and b
int n = 5;
// Array a
int[] a = { 1, 2, 3, 4, 5 };
// Array b
int[] b = { 2, 5, 6, 1, 9 };
Console.WriteLine(numberOfPairs(a, b, n));
}
}
// This code is contributed by divyeshrabadiya07
JavaScript
<script>
// Javascript program of the above approach
// Function to find the number of pairs.
function numberOfPairs(a, b, n)
{
// Array c[] where
// c[i] = a[i] - b[i]
let c = new Array(n);
for(let i = 0; i < n; i++)
{
c[i] = a[i] - b[i];
}
// Sort the array c
c.sort(function(a, b){return a - b});
// Initialise answer as 0
let answer = 0;
// Iterate from index
// 0 to n - 1
for(let i = 1; i < n; i++)
{
// If c[i] <= 0 then
// in the sorted array
// c[i] + c[pos] can never
// greater than 0
// where pos < i
if (c[i] <= 0)
continue;
// Which is equivalent to
// c[j] >= - c[i] + 1
let pos = -1;
for(let j = 0; j < n; j++)
{
if (c[i] + c[j] > 0)
{
pos = j;
break;
}
}
// Add (i - pos) to answer
answer += (i - pos);
}
// Return the answer
return answer;
}
// Number of elements
// in a and b
let n = 5;
// Array a
let a = [ 1, 2, 3, 4, 5 ];
// Array b
let b = [ 2, 5, 6, 1, 9 ];
document.write(numberOfPairs(a, b, n));
</script>
Time Complexity: O( N * log(N) ), where N is the number of elements in array.
Auxiliary Space: O(N)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem