Open In App

Count number of binary strings such that there is no substring of length greater than or equal to 3 with all 1's

Last Updated : 13 Mar, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an integer N, the task is to count the number of binary strings possible of length N such that they don't contain "111" as a substring. The answer could be large so print answer modulo 109 + 7.
Examples: 
 

Input: N = 3 
Output:
All possible substring are "000", "001", 
"010", "011", "100", "101" and "110". 
"111" is not a valid string.
Input N = 16 
Output: 19513 
 


 


Approach: Dynamic programming can be used to solve this problem. Create a dp[][] array where dp[i][j] will store the count of possible substrings such that 1 appears j times consecutively upto the ith index. Now, the recurrence relations will be: 
 

dp[i][0] = dp[i - 1][0] + dp[i - 1][1] + dp[i - 1][2] 
dp[i][1] = dp[i - 1][0] 
dp[i][2] = dp[i - 1][1] 
 


And the base cases will be dp[1][0] = 1, dp[1][1] = 1 and dp[1][2] = 0. Now, the required count of strings will be dp[N][0] + dp[N][1] + dp[N][2].
Below is the implementation of the above approach: 
 

C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;

const long MOD = 1000000007;

// Function to return the count
// of all possible valid strings
long countStrings(long N)
{

    long dp[N + 1][3];

    // Fill 0's in the dp array
    memset(dp, 0, sizeof(dp));

    // Base cases
    dp[1][0] = 1;
    dp[1][1] = 1;
    dp[1][2] = 0;

    for (int i = 2; i <= N; i++) {

        // dp[i][j] = number of possible strings
        // such that '1' just appeared consecutively
        // j times upto the ith index
        dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]
                    + dp[i - 1][2])
                   % MOD;

        // Taking previously calculated value
        dp[i][1] = dp[i - 1][0] % MOD;
        dp[i][2] = dp[i - 1][1] % MOD;
    }

    // Taking all possible cases that
    // can appear at the Nth position
    long ans = (dp[N][0] + dp[N][1]
                + dp[N][2])
               % MOD;

    return ans;
}

// Driver code
int main()
{
    long N = 3;

    cout << countStrings(N);

    return 0;
}
Java
// Java implementation of the approach 
class GFG 
{
    final static int MOD = 1000000007; 
    
    // Function to return the count 
    // of all possible valid strings 
    static long countStrings(int N) 
    { 
        int i, j;
        
        int dp[][] = new int[N + 1][3]; 
    
        // Fill 0's in the dp array 
        for(i = 0; i < N + 1; i++)
        {
            for(j = 9; j < 3 ; j ++)
            {
                dp[i][j] = 0;
            }
        }
        
        // Base cases 
        dp[1][0] = 1; 
        dp[1][1] = 1; 
        dp[1][2] = 0; 
    
        for (i = 2; i <= N; i++) 
        { 
    
            // dp[i][j] = number of possible strings 
            // such that '1' just appeared consecutively 
            // j times upto the ith index 
            dp[i][0] = (dp[i - 1][0] + dp[i - 1][1] + 
                        dp[i - 1][2]) % MOD; 
    
            // Taking previously calculated value 
            dp[i][1] = dp[i - 1][0] % MOD; 
            dp[i][2] = dp[i - 1][1] % MOD; 
        } 
    
        // Taking all possible cases that 
        // can appear at the Nth position 
        int ans = (dp[N][0] + dp[N][1] + 
                              dp[N][2]) % MOD; 
    
        return ans; 
    } 
    
    // Driver code 
    public static void main (String[] args)
    { 
        int N = 3; 
    
        System.out.println(countStrings(N)); 
    } 
}

// This code is contributed by AnkitRai01
Python3
# Python3 implementation of the approach 
MOD = 1000000007

# Function to return the count 
# of all possible valid strings 
def countStrings(N): 

    # Initialise and fill 0's in the dp array
    dp = [[0] * 3 for i in range(N + 1)]

    # Base cases 
    dp[1][0] = 1; 
    dp[1][1] = 1; 
    dp[1][2] = 0; 

    for i in range(2, N + 1): 

        # dp[i][j] = number of possible strings 
        # such that '1' just appeared consecutively 
        # j times upto the ith index 
        dp[i][0] = (dp[i - 1][0] + 
                    dp[i - 1][1] + 
                    dp[i - 1][2]) % MOD 

        # Taking previously calculated value 
        dp[i][1] = dp[i - 1][0] % MOD 
        dp[i][2] = dp[i - 1][1] % MOD 
    

    # Taking all possible cases that 
    # can appear at the Nth position 
    ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD 

    return ans 

# Driver code
if __name__ == '__main__': 

    N = 3

    print(countStrings(N)) 

# This code is contributed by ashutosh450
C#
// C# implementation of the above approach 
using System;         

class GFG 
{
    static readonly int MOD = 1000000007; 
    
    // Function to return the count 
    // of all possible valid strings 
    static long countStrings(int N) 
    { 
        int i, j;
        
        int [,]dp = new int[N + 1, 3]; 
    
        // Fill 0's in the dp array 
        for(i = 0; i < N + 1; i++)
        {
            for(j = 9; j < 3; j ++)
            {
                dp[i, j] = 0;
            }
        }
        
        // Base cases 
        dp[1, 0] = 1; 
        dp[1, 1] = 1; 
        dp[1, 2] = 0; 
    
        for (i = 2; i <= N; i++) 
        { 
    
            // dp[i,j] = number of possible strings 
            // such that '1' just appeared consecutively 
            // j times upto the ith index 
            dp[i, 0] = (dp[i - 1, 0] + dp[i - 1, 1] + 
                        dp[i - 1, 2]) % MOD; 
    
            // Taking previously calculated value 
            dp[i, 1] = dp[i - 1, 0] % MOD; 
            dp[i, 2] = dp[i - 1, 1] % MOD; 
        } 
    
        // Taking all possible cases that 
        // can appear at the Nth position 
        int ans = (dp[N, 0] + dp[N, 1] + 
                              dp[N, 2]) % MOD; 
    
        return ans; 
    } 
    
    // Driver code 
    public static void Main (String[] args)
    { 
        int N = 3; 
    
        Console.WriteLine(countStrings(N)); 
    } 
}

// This code is contributed by Rajput-Ji
JavaScript
<script>

// javascript implementation of the approach 

    var MOD = 1000000007; 
    
    // Function to return the count 
    // of all possible valid strings 
    function countStrings(N) 
    { 
        var i, j;
        
        var dp = Array(N+1).fill(0).map(x => Array(3).fill(0));
    
        // Fill 0's in the dp array 
        for(i = 0; i < N + 1; i++)
        {
            for(j = 9; j < 3 ; j ++)
            {
                dp[i][j] = 0;
            }
        }
        
        // Base cases 
        dp[1][0] = 1; 
        dp[1][1] = 1; 
        dp[1][2] = 0; 
    
        for (i = 2; i <= N; i++) 
        { 
    
            // dp[i][j] = number of possible strings 
            // such that '1' just appeared consecutively 
            // j times upto the ith index 
            dp[i][0] = (dp[i - 1][0] + dp[i - 1][1] + 
                        dp[i - 1][2]) % MOD; 
    
            // Taking previously calculated value 
            dp[i][1] = dp[i - 1][0] % MOD; 
            dp[i][2] = dp[i - 1][1] % MOD; 
        } 
    
        // Taking all possible cases that 
        // can appear at the Nth position 
        var ans = (dp[N][0] + dp[N][1] + 
                              dp[N][2]) % MOD; 
    
        return ans; 
    } 
    
// Driver code 
var N = 3; 
document.write(countStrings(N)); 

// This code is contributed by 29AjayKumar 
</script>

Output: 
7

 

Time Complexity: O(N)

Auxiliary Space: O(N)


Similar Reads