Construct sum-array with sum of elements in given range
Last Updated :
02 Aug, 2022
Improve
You are given an array of n-elements and an odd-integer m. You have to construct a new sum_array from given array such that sum_array[i] = ?arr[j] for (i-(m/2)) < j (i+(m/2)).
note : for 0 > j or j >= n take arr[j] = 0.
Examples:
Input : arr[] = {1, 2, 3, 4, 5}, m = 3 Output : sum_array = {3, 6, 9, 12, 9} Explanation : sum_array[0] = arr[0] + arr[1] sum_array[1] = arr[0] + arr[1] + arr[2] sum_array[2] = arr[1] + arr[2] + arr[3] sum_array[3] = arr[2] + arr[3] + arr[4] sum_array[4] = arr[3] + arr[4] Input : arr[] = {2, 4, 3, 4, 2}, m = 1 Output : sum_array = {2, 4, 3, 4, 2} Explanation : sum_array[0] = arr[0] sum_array[1] = arr[1] sum_array[2] = arr[2] sum_array[3] = arr[3] sum_array[4] = arr[4]
Basic Approach : As per problem statement, we calculate sum_array[i] by iterating over i-(m/2) to i+(m/2). According to this approach, we have a nested loop which will result into time complexity of O(n*m).
Efficient Approach : For calculating sum_array is to use sliding window concept and thus can easily save our time. For Sliding window, the time complexity is O(n).
Algorithm
calculate sum of first (m/2)+1 elementssum_array[0] = sumfor i=1 to i<nif( (i-(m/2)-1) >= 0 ) sum -= arr[(i-(m/2)-1)]if( (i+m/2) < n) sum += arr[(i+m/2)]sum_array[i] = sumprint sum_array
Implementation:
// CPP Program to find sum array for a given
// array.
#include <bits/stdc++.h>
using namespace std;
// function to calc sum_array and print
void calcSum_array(int arr[], int n, int m)
{
int sum = 0;
int sum_array[n];
// calc 1st m/2 + 1 element for 1st window
for (int i = 0; i < m / 2 + 1; i++)
sum += arr[i];
sum_array[0] = sum;
// use sliding window to
// calculate rest of sum_array
for (int i = 1; i < n; i++) {
if (i - (m / 2) - 1 >= 0)
sum -= arr[i - (m / 2) - 1];
if (i + (m / 2) < n)
sum += arr[i + (m / 2)];
sum_array[i] = sum;
}
// print sum_array
for (int i = 0; i < n; i++)
cout << sum_array[i] << " ";
}
// driver program
int main()
{
int arr[] = { 3, 6, 2, 7, 3, 8, 4,
9, 1, 5, 0, 4 };
int m = 5;
int n = sizeof(arr) / sizeof(int);
calcSum_array(arr, n, m);
return 0;
}
// Java Program to find sum array
// for a given array.
class GFG
{
// function to calc sum_array and print
static void calcSum_array(int arr[], int n, int m)
{
int sum = 0;
int sum_array[] = new int[n];
// calc 1st m/2 + 1 element
// for 1st window
for (int i = 0; i < m / 2 + 1; i++)
sum += arr[i];
sum_array[0] = sum;
// use sliding window to
// calculate rest of sum_array
for (int i = 1; i < n; i++)
{
if (i - (m / 2) - 1 >= 0)
sum -= arr[i - (m / 2) - 1];
if (i + (m / 2) < n)
sum += arr[i + (m / 2)];
sum_array[i] = sum;
}
// print sum_array
for (int i = 0; i < n; i++)
System.out.print(sum_array[i] + " ");
}
// Driver program
public static void main(String[] args)
{
int arr[] = { 3, 6, 2, 7, 3, 8, 4, 9, 1, 5, 0, 4 };
int m = 5;
int n = arr.length;
calcSum_array(arr, n, m);
}
}
// This code is contributed by prerna saini.
# Python3 Program to find Sum array
# for a given array.
import math as mt
# function to calc Sum_array and print
def calcSum_array(arr, n, m):
Sum = 0
Sum_array = [0 for i in range(n)]
# calc 1st m/2 + 1 element for 1st window
for i in range(m // 2 + 1):
Sum += arr[i]
Sum_array[0] = Sum
# use sliding window to
# calculate rest of Sum_array
for i in range(1, n):
if (i - (m // 2) - 1 >= 0):
Sum -= arr[i - (m // 2) - 1]
if (i + (m / 2) < n):
Sum += arr[i + (m //2)]
Sum_array[i] = Sum
# print Sum_array
for i in range(n):
print(Sum_array[i], end = " ")
# Driver Code
arr = [ 3, 6, 2, 7, 3, 8, 4, 9, 1, 5, 0, 4 ]
m = 5
n = len(arr)
calcSum_array(arr, n, m)
# This code is contributed by mohit kumar 29
// C# Program to find sum array
// for a given array.
using System;
class GFG
{
// function to calc sum_array and print
static void calcSum_array(int []arr, int n, int m)
{
int sum = 0;
int []sum_array = new int[n];
// calc 1st m/2 + 1 element
// for 1st window
for (int i = 0; i < m / 2 + 1; i++)
sum += arr[i];
sum_array[0] = sum;
// use sliding window to
// calculate rest of sum_array
for (int i = 1; i < n; i++)
{
if (i - (m / 2) - 1 >= 0)
sum -= arr[i - (m / 2) - 1];
if (i + (m / 2) < n)
sum += arr[i + (m / 2)];
sum_array[i] = sum;
}
// print sum_array
for (int i = 0; i < n; i++)
Console.Write(sum_array[i] + " ");
}
// Driver program
public static void Main()
{
int []arr = { 3, 6, 2, 7, 3, 8, 4, 9, 1, 5, 0, 4 };
int m = 5;
int n = arr.Length;
calcSum_array(arr, n, m);
}
}
// This code is contributed by vt_m.
<?php
// PHP Program to find sum array
// for a given array.
// function to calc sum_array and print
function calcSum_array(&$arr, $n, $m)
{
$sum = 0;
$sum_array = array();
// calc 1st m/2 + 1 element
// for 1st window
for ($i = 0;
$i < (int)($m / 2) + 1; $i++)
$sum = $sum + $arr[$i];
$sum_array[0] = $sum;
// use sliding window to
// calculate rest of sum_array
for ($i = 1; $i < $n; $i++)
{
if ($i - (int)($m / 2) - 1 >= 0)
$sum = $sum - $arr[$i -
(int)($m / 2) - 1];
if ($i + (int)($m / 2) < $n)
$sum = $sum + $arr[$i +
(int)($m / 2)];
$sum_array[$i] = $sum;
}
// print sum_array
for ($i = 0; $i < $n; $i++)
echo $sum_array[$i] . " ";
}
// Driver Code
$arr = array(3, 6, 2, 7, 3, 8,
4, 9, 1, 5, 0, 4 );
$m = 5;
$n = sizeof($arr);
calcSum_array($arr, $n, $m);
// This code is contributed by Mukul Singh
?>
<script>
// JavaScript Program to find sum array for a given
// array.
// function to calc sum_array and print
function calcSum_array(arr, n, m)
{
let sum = 0;
let sum_array = new Array(n);
// calc 1st m/2 + 1 element for 1st window
for (let i = 0; i < Math.floor(m / 2) + 1; i++)
sum += arr[i];
sum_array[0] = sum;
// use sliding window to
// calculate rest of sum_array
for (let i = 1; i < n; i++)
{
if (i - Math.floor(m / 2) - 1 >= 0)
sum -= arr[i - Math.floor(m / 2) - 1];
if (i + Math.floor(m / 2) < n)
sum += arr[i + Math.floor(m / 2)];
sum_array[i] = sum;
}
// print sum_array
for (let i = 0; i < n; i++)
document.write(sum_array[i] + " ");
}
// Driver program
let arr = [ 3, 6, 2, 7, 3, 8, 4,
9, 1, 5, 0, 4 ];
let m = 5;
let n = arr.length;
calcSum_array(arr, n, m);
// This code is contributed by Surbhi Tyagi.
</script>
Output
11 18 21 26 24 31 25 27 19 19 10 9