Construct a Perfect Binary Tree from Preorder Traversal
Last Updated :
23 Jul, 2025
Given an array pre[], representing the Preorder traversal of a Perfect Binary Tree consisting of N nodes, the task is to construct a Perfect Binary Tree from the given Preorder Traversal and return the root of the tree.
Examples:
Input: pre[] = {1, 2, 4, 5, 3, 6, 7}
Output:
1
/ \
/ \
2 3
/ \ / \
/ \ / \
4 5 6 7
Input: pre[] = {1, 2, 3}
Output:
1
/ \
/ \
2 3
Generally to construct a binary tree, we can not do it by only using the preorder traversal, but here an extra condition is given that the binary tree is Perfect binary tree. We can use that extra condition.
For Perfect binary tree every node has either 2 or 0 children , and all the leaf nodes are present at same level. And the preorder traversal of a binary tree contains the root first, then the preorder traversal of the left subtree, then the preorder traversal of the right subtree . So for Perfect binary tree root should have same numbers of children in both subtrees , so the number ( say, n) of elements after the root in the preorder traversal should be even (2 * number of nodes in one subtree , as it is Perfect binary tree) . And since each subtrees have equal number of nodes for Perfect binary tree, we can find the preorder traversal of the left subtree (which is half of the array after the root in preorder traversal of the whole tree), and we know the preorder traversal of the right subtree must be after the preorder traversal of the left subtree, so rest half is the preorder traversal of the right subtree.
So the first element in the preorder traversal is the root, we will build a node as the root with this element , then we can easily find the preorder traversals of the left and right subtrees of the root, and we will recursively build the left and right subtrees of the root.
Approach: The given problem can be solved using recursion. Follow the steps below to solve the problem:
- Create a function, say BuildPerfectBT_helper with parameters as preStart, preEnd, pre[] where preStart represent starting index of the array pre[] and preEnd represents the ending index of the array pre[] and perform the following steps:
- If the value of preStart is greater than preEnd, then return NULL.
- Initialize root as pre[preStart].
- If the value of preStart is the same as the preEnd, then return root.
- Initialize 4 variable, say leftPreStart as preStart + 1, rightPreStart as leftPreStart + (preEnd - leftPreStart+1)/2, leftPreEnd as rightPreStart - 1 and rightPreEnd as preEnd.
- Modify the value of root->left by recursively calling the function buildPerfectBT_helper() with the parameters leftPreStart, leftPreEnd and pre[].
- Modify the value of root->right by recursively calling the function buildPerfectBT_helper() with the parameters rightPreStart, rightPreEnd and pre[].
- After performing the above steps, return root.
- After creating the Perfect Binary Tree, print the Inorder traversal of the tree.
Below is the illustration of the above steps discussed:
Step 1: build([1, 2, 4, 5, 3, 6, 7])
Step 2:
1
/ \
/ \
build([2, 4, 5]) build([3, 6, 7])
Now first element (1 here) is root, then the subarray after the first element ( which is [2,4,5,3,6,7] here ) contains the preorder traversals of the left and right subtrees. And we know left subtree's preorder traversal is first half , i.e, [2,4,5] , and the right subtree's preorder traversal is the second half , i.e, [3,6,7]. Now recursively build the left and right subtrees.
Step 3:
1
___________|_________________
/ \
/ \
2 3
______/___________ _______\____________
/ \ / \
/ \ / \
build([4]) build([5]) build([6]) build([7])
Step 4:
1
/ \
/ \
2 3
/ \ / \
/ \ / \
4 5 6 7
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Structure of the tree
struct Node {
int data;
Node *left, *right;
Node(int val)
{
data = val;
left = right = NULL;
}
};
// Function to create a new node with
// the value val
Node* getNewNode(int val)
{
Node* newNode = new Node(val);
newNode->data = val;
newNode->left = newNode->right = NULL;
// Return the newly created node
return newNode;
}
// Function to create the Perfect
// Binary Tree
Node* buildPerfectBT_helper(int preStart,
int preEnd,
int pre[])
{
// If preStart > preEnd return NULL
if (preStart > preEnd)
return NULL;
// Initialize root as pre[preStart]
Node* root = getNewNode(pre[preStart]);
;
// If the only node is left,
// then return node
if (preStart == preEnd)
return root;
// Parameters for further recursion
int leftPreStart = preStart + 1;
int rightPreStart = leftPreStart
+ (preEnd - leftPreStart + 1) / 2;
int leftPreEnd = rightPreStart - 1;
int rightPreEnd = preEnd;
// Recursive Call to build the
// subtree of root node
root->left = buildPerfectBT_helper(
leftPreStart, leftPreEnd, pre);
root->right = buildPerfectBT_helper(
rightPreStart, rightPreEnd, pre);
// Return the created root
return root;
}
// Function to build Perfect Binary Tree
Node* buildPerfectBT(int pre[], int size)
{
return buildPerfectBT_helper(0, size - 1, pre);
}
// Function to print the Inorder of
// the given Tree
void printInorder(Node* root)
{
// Base Case
if (!root)
return;
// Left Recursive Call
printInorder(root->left);
// Print the data
cout << root->data << " ";
// Right Recursive Call
printInorder(root->right);
}
// Driver Code
int main()
{
int pre[] = { 1, 2, 4, 5, 3, 6, 7 };
int N = sizeof(pre) / sizeof(pre[0]);
// Function Call
Node* root = buildPerfectBT(pre, N);
// Print Inorder Traversal
cout << "\nInorder traversal of the tree: ";
printInorder(root);
return 0;
}
Java
// Java program for the above approach
public class Main
{
// Structure of the tree
static class Node {
public int data;
public Node left, right;
public Node(int val)
{
data = val;
left = right = null;
}
}
// Function to create a new node with
// the value val
static Node getNewNode(int val)
{
Node newNode = new Node(val);
// Return the newly created node
return newNode;
}
// Function to create the Perfect
// Binary Tree
static Node buildPerfectBT_helper(int preStart, int preEnd, int[] pre)
{
// If preStart > preEnd return NULL
if (preStart > preEnd)
return null;
// Initialize root as pre[preStart]
Node root = getNewNode(pre[preStart]);
// If the only node is left,
// then return node
if (preStart == preEnd)
return root;
// Parameters for further recursion
int leftPreStart = preStart + 1;
int rightPreStart = leftPreStart + (preEnd - leftPreStart + 1) / 2;
int leftPreEnd = rightPreStart - 1;
int rightPreEnd = preEnd;
// Recursive Call to build the
// subtree of root node
root.left = buildPerfectBT_helper(
leftPreStart, leftPreEnd, pre);
root.right = buildPerfectBT_helper(
rightPreStart, rightPreEnd, pre);
// Return the created root
return root;
}
// Function to build Perfect Binary Tree
static Node buildPerfectBT(int[] pre, int size)
{
return buildPerfectBT_helper(0, size - 1, pre);
}
// Function to print the Inorder of
// the given Tree
static void printInorder(Node root)
{
// Base Case
if (root == null)
return;
// Left Recursive Call
printInorder(root.left);
// Print the data
System.out.print(root.data + " ");
// Right Recursive Call
printInorder(root.right);
}
public static void main(String[] args) {
int[] pre = { 1, 2, 4, 5, 3, 6, 7 };
int N = pre.length;
// Function Call
Node root = buildPerfectBT(pre, N);
// Print Inorder Traversal
System.out.print("Inorder traversal of the tree: ");
printInorder(root);
}
}
// This code is contributed by suresh07.
Python3
# Python3 program for the above approach
# Structure of the tree
class Node:
def __init__(self, val):
self.data = val
self.left = None
self.right = None
# Function to create a new node with
# the value val
def getNewNode(val):
newNode = Node(val)
# Return the newly created node
return newNode
# Function to create the Perfect
# Binary Tree
def buildPerfectBT_helper(preStart, preEnd, pre):
# If preStart > preEnd return NULL
if (preStart > preEnd):
return None
# Initialize root as pre[preStart]
root = getNewNode(pre[preStart])
# If the only node is left,
# then return node
if (preStart == preEnd):
return root
# Parameters for further recursion
leftPreStart = preStart + 1
rightPreStart = leftPreStart + int((preEnd - leftPreStart + 1) / 2)
leftPreEnd = rightPreStart - 1
rightPreEnd = preEnd
# Recursive Call to build the
# subtree of root node
root.left = buildPerfectBT_helper(leftPreStart, leftPreEnd, pre)
root.right = buildPerfectBT_helper(rightPreStart, rightPreEnd, pre)
# Return the created root
return root
# Function to build Perfect Binary Tree
def buildPerfectBT(pre, size):
return buildPerfectBT_helper(0, size - 1, pre)
# Function to print the Inorder of
# the given Tree
def printInorder(root):
# Base Case
if (root == None):
return
# Left Recursive Call
printInorder(root.left)
# Print the data
print(root.data, "", end = "")
# Right Recursive Call
printInorder(root.right)
pre = [ 1, 2, 4, 5, 3, 6, 7 ]
N = len(pre)
# Function Call
root = buildPerfectBT(pre, N)
# Print Inorder Traversal
print("Inorder traversal of the tree: ", end = "")
printInorder(root)
# This code is contributed by decode2207.
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
// Structure of the tree
class Node {
public int data;
public Node left, right;
public Node(int val)
{
data = val;
left = right = null;
}
}
// Function to create a new node with
// the value val
static Node getNewNode(int val)
{
Node newNode = new Node(val);
// Return the newly created node
return newNode;
}
// Function to create the Perfect
// Binary Tree
static Node buildPerfectBT_helper(int preStart, int preEnd, int[] pre)
{
// If preStart > preEnd return NULL
if (preStart > preEnd)
return null;
// Initialize root as pre[preStart]
Node root = getNewNode(pre[preStart]);
// If the only node is left,
// then return node
if (preStart == preEnd)
return root;
// Parameters for further recursion
int leftPreStart = preStart + 1;
int rightPreStart = leftPreStart + (preEnd - leftPreStart + 1) / 2;
int leftPreEnd = rightPreStart - 1;
int rightPreEnd = preEnd;
// Recursive Call to build the
// subtree of root node
root.left = buildPerfectBT_helper(
leftPreStart, leftPreEnd, pre);
root.right = buildPerfectBT_helper(
rightPreStart, rightPreEnd, pre);
// Return the created root
return root;
}
// Function to build Perfect Binary Tree
static Node buildPerfectBT(int[] pre, int size)
{
return buildPerfectBT_helper(0, size - 1, pre);
}
// Function to print the Inorder of
// the given Tree
static void printInorder(Node root)
{
// Base Case
if (root == null)
return;
// Left Recursive Call
printInorder(root.left);
// Print the data
Console.Write(root.data + " ");
// Right Recursive Call
printInorder(root.right);
}
static void Main() {
int[] pre = { 1, 2, 4, 5, 3, 6, 7 };
int N = pre.Length;
// Function Call
Node root = buildPerfectBT(pre, N);
// Print Inorder Traversal
Console.Write("Inorder traversal of the tree: ");
printInorder(root);
}
}
// This code is contributed by mukesh07.
JavaScript
<script>
// Javascript program for the above approach
// Structure of the tree
class Node
{
constructor(val) {
this.left = null;
this.right = null;
this.data = val;
}
}
// Function to create a new node with
// the value val
function getNewNode(val)
{
let newNode = new Node(val);
// Return the newly created node
return newNode;
}
// Function to create the Perfect
// Binary Tree
function buildPerfectBT_helper(preStart, preEnd, pre)
{
// If preStart > preEnd return NULL
if (preStart > preEnd)
return null;
// Initialize root as pre[preStart]
let root = getNewNode(pre[preStart]);
// If the only node is left,
// then return node
if (preStart == preEnd)
return root;
// Parameters for further recursion
let leftPreStart = preStart + 1;
let rightPreStart = leftPreStart
+ parseInt((preEnd - leftPreStart + 1) / 2);
let leftPreEnd = rightPreStart - 1;
let rightPreEnd = preEnd;
// Recursive Call to build the
// subtree of root node
root.left = buildPerfectBT_helper(
leftPreStart, leftPreEnd, pre);
root.right = buildPerfectBT_helper(
rightPreStart, rightPreEnd, pre);
// Return the created root
return root;
}
// Function to build Perfect Binary Tree
function buildPerfectBT(pre, size)
{
return buildPerfectBT_helper(0, size - 1, pre);
}
// Function to print the Inorder of
// the given Tree
function printInorder(root)
{
// Base Case
if (root == null)
return;
// Left Recursive Call
printInorder(root.left);
// Print the data
document.write(root.data + " ");
// Right Recursive Call
printInorder(root.right);
}
let pre = [ 1, 2, 4, 5, 3, 6, 7 ];
let N = pre.length;
// Function Call
let root = buildPerfectBT(pre, N);
// Print Inorder Traversal
document.write("Inorder traversal of the tree: ");
printInorder(root);
// This code is contributed by divyesh072019.
</script>
Output: Inorder traversal of the tree: 4 2 5 1 6 3 7
Time Complexity: O(N)
Auxiliary Space: O(N)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem