Conflict Serializability in DBMS
Last Updated :
02 Aug, 2025
Conflict Serializability ensures that a concurrent schedule produces the same result as some serial execution by reordering non-conflicting operations. It maintains data consistency and is stricter than View Serializability, which allows more flexibility but still preserves correctness.
- Non-conflicting operations: Two operations are considered non-conflicting if they operate on separate data items, or if they involve the same data item but both are read operations.
Conflicting Operations
Two operations are said to be conflicting if all conditions are satisfied:
- They belong to different transactions
- They operate on the same data item
- Atleast one of them is a write operation
Conflicting OperationsConsider the following schedule:
S1: R1(A), W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)
If Oi and Oj are two operations in a transaction and Oi< Oj (Oi is executed before Oj), same order will follow in the schedule as well. Using this property, we can get two transactions of schedule S1:
T1: R1(A), W1(A), R1(B), W1(B)
T2: R2(A), W2(A), R2(B), W2(B)
Possible Serial Schedules are: T1->T2 or T2->T1
-> Swapping non-conflicting operations R2(A) and R1(B) in S1, the schedule becomes,
S11: R1(A), W1(A), R1(B), W2(A), R2(A), W1(B), R2(B), W2(B)
-> Similarly, swapping non-conflicting operations W2(A) and W1(B) in S11, the schedule becomes,
S12: R1(A), W1(A), R1(B), W1(B), R2(A), W2(A), R2(B), W2(B)
S12 is a serial schedule in which all operations of T1 are performed before starting any operation of T2. Since S has been transformed into a serial schedule S12 by swapping non-conflicting operations of S1, S1 is conflict serializable.
Let us take another Schedule:
S2: R2(A), W2(A), R1(A), W1(A), R1(B), W1(B), R2(B), W2(B)
Two transactions will be:
T1: R1(A), W1(A), R1(B), W1(B)
T2: R2(A), W2(A), R2(B), W2(B)
Possible Serial Schedules are: T1->T2 or T2->T1
Original Schedule is as:
S2: R2(A), W2(A), R1(A), W1(A), R1(B), W1(B), R2(B), W2(B)
Swapping non-conflicting operations R1(A) and R2(B) in S2, the schedule becomes,
S21: R2(A), W2(A), R2(B), W1(A), R1(B), W1(B), R1(A), W2(B)
Similarly, swapping non-conflicting operations W1(A) and W2(B) in S21, the schedule becomes,
S22: R2(A), W2(A), R2(B), W2(B), R1(B), W1(B), R1(A), W1(A)
In schedule S22, all operations of T2 are performed first, but operations of T1 are not in order (order should be R1(A), W1(A), R1(B), W1(B)). So S2 is not conflict serializable.
Testing Conflict Serializability
A Precedence Graph or Serialization Graph is used commonly to test the Conflict Serializability of a schedule. It is a directed Graph (V, E) consisting of a set of nodes V = {T1, T2, T3..........Tn} and a set of directed edges E = {e1, e2, e3..................em}.
The graph contains one node for each Transaction Ti. An edge ei is of the form Tj --> Tk where Tj is the starting node of ei and Tk is the ending node of ei. An edge ei is drawn from node Tj to node Tk if a conflicting operation in Tj occurs before the corresponding conflicting operation in Tk in the schedule. The Algorithm can be written as:
- Create a node T in the graph for each participating transaction in the schedule.
- For the conflicting operation read_item(X) and write_item(X) - If a Transaction Tj executes a read_item (X) after Ti executes a write_item (X), draw an edge from Ti to Tj in the graph.
- For the conflicting operation write_item(X) and read_item(X) - If a Transaction Tj executes a write_item (X) after Ti executes a read_item (X), draw an edge from Ti to Tj in the graph.
- For the conflicting operation write_item(X) and write_item(X) - If a Transaction Tj executes a write_item (X) after Ti executes a write_item (X), draw an edge from Ti to Tj in the graph.
- Schedule S is serializable if there is no cycle in the precedence graph.
If there is no cycle in the precedence graph, it means we can construct a serial schedule S' which is conflict equivalent to schedule S. The serial schedule S' can be found by Topological Sorting of the acyclic precedence graph. Such schedules can be more than 1. For example, Consider the schedule S:
S: r1(x) r1(y) w2(x) w1(x) r2(y)
Creating Precedence Graph
Step 1: Make two nodes corresponding to Transaction T1 and T2.

Step 2: For the conflicting pair r1(x) w2(x), where r1(x) happens before w2(x), draw an edge from T1 to T2.

Step 3: For the conflicting pair w2(x) w1(x), where w2(x) happens before w1(x), draw an edge from T2 to T1.

Since the graph is cyclic, we can conclude that it is not conflict serializable to any schedule serial schedule. Let us try to infer a serial schedule from this graph using topological ordering.
The edge T1-->T2 tells that T1 should come before T2 in the linear ordering. The edge T2 --> T1 tells that T2 should come before T1 in the linear ordering. So, we can not predict any particular order (when the graph is cyclic). Therefore, no serial schedule can be obtained from this graph.
Consider another schedule S1:
S1: r1(x) r3(y) w1(x) w2(y) r3(x) w2(x)

The graph for this schedule is: Since the graph is acyclic, the schedule is conflict serializable. Performing Topological Sort on this graph would give us a possible serial schedule that is conflict equivalent to schedule S1. In Topological Sort, we first select the node with in-degree 0, which is T1. This would be followed by T3 and T2. So, S1 is conflict serializable since it is conflict equivalent to the serial schedule T1 T3 T2.
Advantages of Conflict Serializability
- Consistency: Conflict serializability guarantees that the transactions' outcomes correspond to the sequence in which they were carried out.
- Correctness: Regardless of the order in which transactions were submitted, conflict serializability guarantees that transactions are executed correctly.
- Decreased Overhead: By doing away with pointless locking and other conflict resolution techniques, conflict serializability lowers overhead.
- Enhanced Concurrency: By enabling concurrent execution of operations without causing conflicts, conflict serializability enhances concurrency.
Disadvantages of Conflict Serializability
- Complexity: Conflict serializability can be complex to implement, especially in large and complex databases.
- Reduced Performance: Conflict serializability can reduce performance by introducing delays and overhead due to locking and other conflict resolution mechanisms.
- Limited Concurrency: Conflict serializability can limit the degree of concurrency in the system because it may delay some transactions to avoid conflicts.
- Increased Overhead: Conflict serializability requires additional overhead to maintain the order of the transactions and ensure that they do not conflict with each other.
Conflict Serializability in DBMS
Transaction and Concurrency Control | Conflict Serializable Schedule in DBMS
Similar Reads
DBMS Tutorial â Learn Database Management System Database Management System (DBMS) is a software used to manage data from a database. A database is a structured collection of data that is stored in an electronic device. The data can be text, video, image or any other format.A relational database stores data in the form of tables and a NoSQL databa
7 min read
Basic of DBMS
Introduction of DBMS (Database Management System)DBMS is a software system that manages, stores, and retrieves data efficiently in a structured format.It allows users to create, update, and query databases efficiently.Ensures data integrity, consistency, and security across multiple users and applications.Reduces data redundancy and inconsistency
6 min read
History of DBMSThe first database management systems (DBMS) were created to handle complex data for businesses in the 1960s. These systems included Charles Bachman's Integrated Data Store (IDS) and IBM's Information Management System (IMS). Databases were first organized into tree-like structures using hierarchica
7 min read
DBMS Architecture 1-level, 2-Level, 3-LevelA DBMS architecture defines how users interact with the database to read, write, or update information. A well-designed architecture and schema (a blueprint detailing tables, fields and relationships) ensure data consistency, improve performance and keep data secure.Types of DBMS Architecture There
6 min read
Difference between File System and DBMSA file system and a DBMS are two kinds of data management systems that are used in different capacities and possess different characteristics. A File System is a way of organizing files into groups and folders and then storing them in a storage device. It provides the media that stores data as well
6 min read
Entity Relationship Model
Introduction of ER ModelThe Entity-Relationship Model (ER Model) is a conceptual model for designing a databases. This model represents the logical structure of a database, including entities, their attributes and relationships between them. Entity: An objects that is stored as data such as Student, Course or Company.Attri
10 min read
Structural Constraints of Relationships in ER ModelStructural constraints, within the context of Entity-Relationship (ER) modeling, specify and determine how the entities take part in the relationships and this gives an outline of how the interactions between the entities can be designed in a database. Two primary types of constraints are cardinalit
5 min read
Generalization, Specialization and Aggregation in ER ModelUsing the ER model for bigger data creates a lot of complexity while designing a database model, So in order to minimize the complexity Generalization, Specialization and Aggregation were introduced in the ER model. These were used for data abstraction. In which an abstraction mechanism is used to h
4 min read
Introduction of Relational Model and Codd Rules in DBMSThe Relational Model is a fundamental concept in Database Management Systems (DBMS) that organizes data into tables, also known as relations. This model simplifies data storage, retrieval, and management by using rows and columns. Coddâs Rules, introduced by Dr. Edgar F. Codd, define the principles
14 min read
Keys in Relational ModelIn the context of a relational database, keys are one of the basic requirements of a relational database model. Keys are fundamental components that ensure data integrity, uniqueness and efficient access. It is widely used to identify the tuples(rows) uniquely in the table. We also use keys to set u
6 min read
Mapping from ER Model to Relational ModelConverting an Entity-Relationship (ER) diagram to a Relational Model is a crucial step in database design. The ER model represents the conceptual structure of a database, while the Relational Model is a physical representation that can be directly implemented using a Relational Database Management S
7 min read
Strategies for Schema design in DBMSThere are various strategies that are considered while designing a schema. Most of these strategies follow an incremental approach that is, they must start with some schema constructs derived from the requirements and then they incrementally modify, refine or build on them. What is Schema Design?Sch
6 min read
Relational Model
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Relational Algebra
Introduction of Relational Algebra in DBMSRelational Algebra is a formal language used to query and manipulate relational databases, consisting of a set of operations like selection, projection, union, and join. It provides a mathematical framework for querying databases, ensuring efficient data retrieval and manipulation. Relational algebr
9 min read
SQL Joins (Inner, Left, Right and Full Join)SQL joins are fundamental tools for combining data from multiple tables in relational databases. For example, consider two tables where one table (say Student) has student information with id as a key and other table (say Marks) has information about marks of every student id. Now to display the mar
4 min read
Join operation Vs Nested query in DBMSThe concept of joins and nested queries emerged to facilitate the retrieval and management of data stored in multiple, often interrelated tables within a relational database. As databases are normalized to reduce redundancy, the meaningful information extracted often requires combining data from dif
3 min read
Tuple Relational Calculus (TRC) in DBMSTuple Relational Calculus (TRC) is a non-procedural query language used to retrieve data from relational databases by describing the properties of the required data (not how to fetch it). It is based on first-order predicate logic and uses tuple variables to represent rows of tables.Syntax: The basi
4 min read
Domain Relational Calculus in DBMSDomain Relational Calculus (DRC) is a formal query language for relational databases. It describes queries by specifying a set of conditions or formulas that the data must satisfy. These conditions are written using domain variables and predicates, and it returns a relation that satisfies the specif
4 min read
Functional Dependencies & Normalization
Attribute Closure in DBMSFunctional dependency and attribute closure are essential for maintaining data integrity and building effective, organized and normalized databases. Attribute closure of an attribute set can be defined as set of attributes which can be functionally determined from it.How to find attribute closure of
4 min read
Armstrong's Axioms in Functional Dependency in DBMSArmstrong's Axioms refer to a set of inference rules, introduced by William W. Armstrong, that are used to test the logical implication of functional dependencies. Given a set of functional dependencies F, the closure of F (denoted as F+) is the set of all functional dependencies logically implied b
4 min read
Canonical Cover of Functional Dependencies in DBMSManaging a large set of functional dependencies can result in unnecessary computational overhead. This is where the canonical cover becomes useful. A canonical cover is a set of functional dependencies that is equivalent to a given set of functional dependencies but is minimal in terms of the number
7 min read
Normal Forms in DBMSIn the world of database management, Normal Forms are important for ensuring that data is structured logically, reducing redundancy, and maintaining data integrity. When working with databases, especially relational databases, it is critical to follow normalization techniques that help to eliminate
7 min read
The Problem of Redundancy in DatabaseRedundancy means having multiple copies of the same data in the database. This problem arises when a database is not normalized. Suppose a table of student details attributes is: student ID, student name, college name, college rank, and course opted. Student_ID Name Contact College Course Rank 100Hi
6 min read
Lossless Join and Dependency Preserving DecompositionDecomposition of a relation is done when a relation in a relational model is not in appropriate normal form. Relation R is decomposed into two or more relations if decomposition is lossless join as well as dependency preserving. Lossless Join DecompositionIf we decompose a relation R into relations
4 min read
Denormalization in DatabasesDenormalization is a database optimization technique in which we add redundant data to one or more tables. This can help us avoid costly joins in a relational database. Note that denormalization does not mean 'reversing normalization' or 'not to normalize'. It is an optimization technique that is ap
4 min read
Transactions & Concurrency Control
ACID Properties in DBMSTransactions are fundamental operations that allow us to modify and retrieve data. However, to ensure the integrity of a database, it is important that these transactions are executed in a way that maintains consistency, correctness, and reliability even in case of failures / errors. This is where t
5 min read
Types of Schedules in DBMSScheduling is the process of determining the order in which transactions are executed. When multiple transactions run concurrently, scheduling ensures that operations are executed in a way that prevents conflicts or overlaps between them.There are several types of schedules, all of them are depicted
6 min read
Recoverability in DBMSRecoverability ensures that after a failure, the database can restore a consistent state by keeping committed changes and undoing uncommitted ones. It uses logs to redo or undo actions, preventing data loss and maintaining integrity.There are several levels of recoverability that can be supported by
5 min read
Implementation of Locking in DBMSLocking protocols are used in database management systems as a means of concurrency control. Multiple transactions may request a lock on a data item simultaneously. Hence, we require a mechanism to manage the locking requests made by transactions. Such a mechanism is called a Lock Manager. It relies
5 min read
Deadlock in DBMSA deadlock occurs in a multi-user database environment when two or more transactions block each other indefinitely by each holding a resource the other needs. This results in a cycle of dependencies (circular wait) where no transaction can proceed.For Example: Consider the image belowDeadlock in DBM
4 min read
Starvation in DBMSStarvation in DBMS is a problem that happens when some processes are unable to get the resources they need because other processes keep getting priority. This can happen in situations like locking or scheduling, where some processes keep getting the resources first, leaving others waiting indefinite
8 min read
Advanced DBMS
Indexing in DatabasesIndexing in DBMS is used to speed up data retrieval by minimizing disk scans. Instead of searching through all rows, the DBMS uses index structures to quickly locate data using key values.When an index is created, it stores sorted key values and pointers to actual data rows. This reduces the number
6 min read
Introduction of B TreeA B-Tree is a specialized m-way tree designed to optimize data access, especially on disk-based storage systems. In a B-Tree of order m, each node can have up to m children and m-1 keys, allowing it to efficiently manage large datasets.The value of m is decided based on disk block and key sizes.One
8 min read
Introduction of B+ TreeA B+ Tree is an advanced data structure used in database systems and file systems to maintain sorted data for fast retrieval, especially from disk. It is an extended version of the B Tree, where all actual data is stored only in the leaf nodes, while internal nodes contain only keys for navigation.C
5 min read
Bitmap Indexing in DBMSBitmap Indexing is a powerful data indexing technique used in Database Management Systems (DBMS) to speed up queries- especially those involving large datasets and columns with only a few unique values (called low-cardinality columns).In a database table, some columns only contain a few different va
3 min read
Inverted IndexAn Inverted Index is a data structure used in information retrieval systems to efficiently retrieve documents or web pages containing a specific term or set of terms. In an inverted index, the index is organized by terms (words), and each term points to a list of documents or web pages that contain
7 min read
SQL Queries on Clustered and Non-Clustered IndexesIndexes in SQL play a pivotal role in enhancing database performance by enabling efficient data retrieval without scanning the entire table. The two primary types of indexes Clustered Index and Non-Clustered Index serve distinct purposes in optimizing query performance. In this article, we will expl
7 min read
File Organization in DBMSFile organization in DBMS refers to the method of storing data records in a file so they can be accessed efficiently. It determines how data is arranged, stored, and retrieved from physical storage.The Objective of File OrganizationIt helps in the faster selection of records i.e. it makes the proces
5 min read
DBMS Practice