Compute nCr%p using Fermat Little Theorem
Last Updated :
23 Jul, 2025
Given three numbers n, r and p, compute the value of nCr mod p. Here p is a prime number greater than n. Here nCr is Binomial Coefficient.
Example:
Input: n = 10, r = 2, p = 13
Output: 6
Explanation: 10C2 is 45 and 45 % 13 is 6.
Input: n = 6, r = 2, p = 13
Output: 2
We have discussed the following methods in previous posts.
Compute nCr % p | Set 1 (Introduction and Dynamic Programming Solution)
Compute nCr % p | Set 2 (Lucas Theorem)
In this post, Fermat Theorem-based solution is discussed.
Background:
Fermat's little theorem and modular inverse
Fermat's little theorem states that if p is a prime number, then for any integer a, the number ap - a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as:
ap = a (mod p)
For example, if a = 2 and p = 7, 27 = 128, and 128 - 2 = 7 × 18 is an integer multiple of 7.
If a is not divisible by p, Fermat's little theorem is equivalent to the statement a p - 1 - 1 is an integer multiple of p, i.e
ap-1 = 1 (mod p)
If we multiply both sides by a-1, we get.
ap-2 = a-1 (mod p)
So we can find modular inverse as p-2.
Computation:
We know the formula for nCr
nCr = fact(n) / (fact(r) x fact(n-r))
Here fact() means factorial.
nCr % p = (fac[n]* modIverse(fac[r]) % p *
modIverse(fac[n-r]) % p) % p;
Here modIverse() means modular inverse under
modulo p.
Following is the implementation of the above algorithm. In the following implementation, an array fac[] is used to store all the computed factorial values.
C++
// A modular inverse based solution to
// compute nCr % p
#include <bits/stdc++.h>
using namespace std;
/* Iterative Function to calculate (x^y)%p
in O(log y) */
unsigned long long power(unsigned long long x,
int y, int p)
{
unsigned long long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
unsigned long long modInverse(unsigned long long n,
int p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's little
// theorem.
unsigned long long nCrModPFermat(unsigned long long n,
int r, int p)
{
// If n<r, then nCr should return 0
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
unsigned long long fac[n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = (fac[i - 1] * i) % p;
return (fac[n] * modInverse(fac[r], p) % p
* modInverse(fac[n - r], p) % p)
% p;
}
// Driver program
int main()
{
// p must be a prime greater than n.
int n = 10, r = 2, p = 13;
cout << "Value of nCr % p is "
<< nCrModPFermat(n, r, p);
return 0;
}
Java
// A modular inverse based solution to
// compute nCr %
import java.io.*;
class GFG {
/* Iterative Function to calculate
(x^y)%p in O(log y) */
static int power(int x, int y, int p)
{
// Initialize result
int res = 1;
// Update x if it is more than or
// equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x
// with result
if (y % 2 == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
static int modInverse(int n, int p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's
// little theorem.
static int nCrModPFermat(int n, int r,
int p)
{
if (n<r)
return 0;
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
int[] fac = new int[n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[n] * modInverse(fac[r], p)
% p * modInverse(fac[n - r], p)
% p)
% p;
}
// Driver program
public static void main(String[] args)
{
// p must be a prime greater than n.
int n = 10, r = 2, p = 13;
System.out.println("Value of nCr % p is "
+ nCrModPFermat(n, r, p));
}
}
// This code is contributed by Anuj_67.
Python3
# Python3 program to calculate nCr % p
#Python function to calculate nCr % p
def ncr(n, r, p):
# initialize numerator and denominator
num = den = 1
for i in range(r):
num = (num * (n - i)) % p
den = (den * (i + 1)) % p
return (num * pow(den, p - 2, p)) % p
# p must be a prime greater than n
n, r, p = 10, 2, 13
print("Value of nCr % p is", ncr(n, r, p))
C#
// A modular inverse based solution to
// compute nCr % p
using System;
class GFG {
/* Iterative Function to calculate
(x^y)%p in O(log y) */
static int power(int x, int y, int p)
{
// Initialize result
int res = 1;
// Update x if it is more than or
// equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x
// with result
if (y % 2 == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
static int modInverse(int n, int p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's
// little theorem.
static int nCrModPFermat(int n, int r,
int p)
{
if (n<r)
return 0;
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
int[] fac = new int[n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[n] * modInverse(fac[r], p)
% p * modInverse(fac[n - r], p)
% p)
% p;
}
// Driver program
static void Main()
{
// p must be a prime greater than n.
int n = 10, r = 11, p = 13;
Console.Write("Value of nCr % p is "
+ nCrModPFermat(n, r, p));
}
}
// This code is contributed by Anuj_67
PHP
<?php
// A modular inverse
// based solution to
// compute nCr % p
// Iterative Function to
// calculate (x^y)%p
// in O(log y)
function power($x, $y, $p)
{
// Initialize result
$res = 1;
// Update x if it
// is more than or
// equal to p
$x = $x % $p;
while ($y > 0)
{
// If y is odd,
// multiply x
// with result
if ($y & 1)
$res = ($res * $x) % $p;
// y must be
// even now
// y = y/2
$y = $y >> 1;
$x = ($x * $x) % $p;
}
return $res;
}
// Returns n^(-1) mod p
function modInverse($n, $p)
{
return power($n, $p - 2, $p);
}
// Returns nCr % p using
// Fermat's little
// theorem.
function nCrModPFermat($n, $r, $p)
{
if ($n<$r)
return 0;
// Base case
if ($r==0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
//$fac[$n+1];
$fac[0] = 1;
for ($i = 1; $i <= $n; $i++)
$fac[$i] = $fac[$i - 1] *
$i % $p;
return ($fac[$n] * modInverse($fac[$r], $p) % $p *
modInverse($fac[$n - $r], $p) % $p) % $p;
}
// Driver Code
// p must be a prime
// greater than n.
$n = 10;
$r = 2;
$p = 13;
echo "Value of nCr % p is ",
nCrModPFermat($n, $r, $p);
// This code is contributed by Ajit.
?>
JavaScript
<script>
// A modular inverse based solution
// to compute nCr % p
/* Iterative Function to calculate
(x^y)%p in O(log y) */
function power(x, y, p)
{
// Initialize result
let res = 1;
// Update x if it is more than or
// equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x
// with result
if (y % 2 == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
function modInverse(n, p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's
// little theorem.
function nCrModPFermat(n, r, p)
{
if (n<r)
{
return 0;
}
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
let fac = new Array(n + 1);
fac[0] = 1;
for (let i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[n] * modInverse(fac[r], p) % p *
modInverse(fac[n - r], p) % p) % p;
}
// p must be a prime greater than n.
let n = 10, r = 2, p = 13;
document.write("Value of nCr % p is " +
nCrModPFermat(n, r, p));
</script>
OutputValue of nCr % p is 6
Time Complexity: O(n)
Auxiliary Space: O(n)
We can further improve it's space complexity:
Instead of calculating factorial in a different array, we can directly multiply numbers with some cancellations.
We know the formula for nCr
nCr = fact(n) / (fact(r) x fact(n-r))
fact(n) = n * (n-1) * (n-2) * (n-3)* .... * 1;
fact(r) = r * (r-1) * (r-2) * ......... *1;
Because r is always less than n in nCr So all factors in fact(r) also come in fact(n),
hence we can cancell them.
And get the multiplication of rest elements of numerator and denominator(fact(n-r))
Note that rest elements of numerator will be n* (n-1) *(n-2) * .... (r+1).
We can also improve time complexity with the logic nCr is equal to nC(n-r). So whenever n-r is less than r compute nCn-r instead of nCr.
See the below implementation:
C++
// A modular inverse based solution to
// compute nCr % p
#include <bits/stdc++.h>
using namespace std;
/* Iterative Function to calculate (x^y)%p
in O(log y) */
unsigned long long power(unsigned long long x, int y, int p)
{
unsigned long long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0) {
// If y is odd, multiply x with result
if (y & 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
unsigned long long modInverse(unsigned long long n, int p)
{
return power(n, p - 2, p);
}
unsigned long long mul(unsigned long long x,
unsigned long long y, int p)
{
return x * 1ull * y % p;
}
unsigned long long divide(unsigned long long x,
unsigned long long y, int p)
{
return mul(x, modInverse(y, p), p);
}
// Returns nCr % p using Fermat's little
// theorem.
unsigned long long nCrModPFermat(unsigned long long n,
int r, int p)
{
// If n<r, then nCr should return 0
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
// if n-r is less calculate nCn-r
if (n - r < r)
return nCrModPFermat(n, n - r, p);
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
unsigned long long res = 1;
// keep multiplying numerator terms and dividing denominator terms in res
for (int i = r; i >= 1; i--)
res = divide(mul(res, n - i + 1, p), i, p);
return res;
}
// Driver program
int main()
{
// p must be a prime greater than n.
int n = 10, r = 2, p = 13;
cout << "Value of nCr % p is "
<< nCrModPFermat(n, r, p);
return 0;
}
//Code and idea by Harsh Singh (hsnooob)
Java
import java.util.*;
public class Gfg {
// Iterative Function to calculate (x^y)%p in O(log y)
public static long power(long x, int y, int p) {
long res = 1; // Initialize result
x = x % p; // Update x if it is more than or equal to p
while (y > 0) {
// If y is odd, multiply x with result
if ((y & 1) == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
public static long modInverse(long n, int p) {
return power(n, p - 2, p);
}
public static long mul(long x, long y, int p) {
return x * 1L * y % p;
}
public static long divide(long x, long y, int p) {
return mul(x, modInverse(y, p), p);
}
// Returns nCr % p using Fermat's little theorem.
public static long nCrModPFermat(long n, long r, int p) {
// If n<r, then nCr should return 0
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
// if n-r is less calculate nCn-r
if (n - r < r)
return nCrModPFermat(n, n - r, p);
// Fill factorial array so that we can find all factorial of r, n and n-r
long res = 1;
// keep multiplying numerator terms and dividing denominator terms in res
for (long i = r; i >= 1; i--)
res = divide(mul(res, n - i + 1, p), i, p);
return res;
}
// Driver program
public static void main(String[] args) {
// p must be a prime greater than n.
int n = 10, r = 2, p = 13;
System.out.println("Value of nCr % p is " + nCrModPFermat(n, r, p));
}
}
Python3
def power(x, y, p):
res = 1
x = x % p
while y > 0:
if y & 1:
res = (res * x) % p
y = y >> 1
x = (x * x) % p
return res
def modInverse(n, p):
return power(n, p - 2, p)
def mul(x, y, p):
return (x * y) % p
def divide(x, y, p):
return mul(x, modInverse(y, p), p)
def nCrModPFermat(n, r, p):
if n < r:
return 0
if r == 0:
return 1
if n - r < r:
return nCrModPFermat(n, n - r, p)
res = 1
for i in range(1, r + 1):
res = divide(mul(res, n - i + 1, p), i, p)
return res
n = 10
r = 2
p = 13
print("Value of nCr % p is", nCrModPFermat(n, r, p))
C#
using System;
class Program {
// Iterative Function to calculate (x^y)%p in O(log y)
static long Power(long x, int y, int p)
{
long res = 1; // Initialize result
x = x % p; // Update x if it is more than or equal
// to p
while (y > 0) {
// If y is odd, multiply x with result
if ((y & 1) == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
static long ModInverse(long n, int p)
{
return Power(n, p - 2, p);
}
static long Mul(long x, long y, int p)
{
return x * 1L * y % p;
}
static long Divide(long x, long y, int p)
{
return Mul(x, ModInverse(y, p), p);
}
// Returns nCr % p using Fermat's little theorem.
static long NCrModPFermat(long n, long r, int p)
{
// If n<r, then nCr should return 0
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
// if n-r is less calculate nCn-r
if (n - r < r)
return NCrModPFermat(n, n - r, p);
// Fill factorial array so that we can find all
// factorial of r, n and n-r
long res = 1;
// keep multiplying numerator terms and dividing
// denominator terms in res
for (long i = r; i >= 1; i--)
res = Divide(Mul(res, n - i + 1, p), i, p);
return res;
}
static void Main(string[] args)
{
// p must be a prime greater than n.
int n = 10, r = 2, p = 13;
Console.WriteLine("Value of nCr % p is "
+ NCrModPFermat(n, r, p));
}
}
JavaScript
// A modular inverse based solution to
// compute nCr % p
function power(x, y, p) {
let res = 1; // Initialize result
x = x % p; // Update x if it is more than or equal to p
while (y > 0) {
// If y is odd, multiply x with result
if (y & 1) res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
function modInverse(n, p) {
return power(n, p - 2, p);
}
function mul(x, y, p) {
return (x * y) % p;
}
function divide(x, y, p) {
return mul(x, modInverse(y, p), p);
}
// Returns nCr % p using Fermat's little theorem.
function nCrModPFermat(n, r, p) {
// If n<r, then nCr should return 0
if (n < r) return 0;
// Base case
if (r == 0) return 1;
// if n-r is less calculate nCn-r
if (n - r < r) return nCrModPFermat(n, n - r, p);
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
let res = 1;
// keep multiplying numerator terms and dividing denominator terms in res
for (let i = r; i >= 1; i--)
res = divide(mul(res, n - i + 1, p), i, p);
return res;
}
// Driver program
let n = 10,
r = 2,
p = 13;
console.log("Value of nCr % p is " + nCrModPFermat(n, r, p));
OutputValue of nCr % p is 6
Time Complexity: O(n)
Auxiliary Space: O(1)
Improvements:
In competitive programming, we can pre-compute fac[] for a given upper limit so that we don't have to compute it for every test case. We also can use unsigned long long int everywhere to avoid overflows.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem