Check whether it is possible to make both arrays equal by modifying a single element
Last Updated :
05 May, 2025
Given two sequences of integers 'A' and 'B', and an integer 'k'. The task is to check if we can make both sequences equal by modifying any one element from the sequence A in the following way:
We can add any number from the range [-k, k] to any element of A. This operation must only be performed once. Print Yes if it is possible or No otherwise.
Examples:
Input: K = 2, A[] = {1, 2, 3}, B[] = {3, 2, 1}
Output: Yes
0 can be added to any element and both the sequences will be equal.
Input: K = 4, A[] = {1, 5}, B[] = {1, 1}
Output: Yes
-4 can be added to 5 then the sequence A becomes {1, 1} which is equal to the sequence B.
Approach: Notice that to make both the sequence equal with just one move there has to be only one mismatching element in both the sequences and the absolute difference between them must be less than or equal to 'k'.
- Sort both the arrays and look for the mismatching elements.
- If there are more than one mismatch elements then print 'No'
- Else, find the absolute difference between the elements.
- If the difference <= k then print 'Yes' else print 'No'.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach
#include<bits/stdc++.h>
using namespace std;
// Function to check if both
// sequences can be made equal
static bool check(int n, int k,
int *a, int *b)
{
// Sorting both the arrays
sort(a,a+n);
sort(b,b+n);
// Flag to tell if there are
// more than one mismatch
bool fl = false;
// To stores the index
// of mismatched element
int ind = -1;
for (int i = 0; i < n; i++)
{
if (a[i] != b[i])
{
// If there is more than one
// mismatch then return False
if (fl == true)
{
return false;
}
fl = true;
ind = i;
}
}
// If there is no mismatch or the
// difference between the
// mismatching elements is <= k
// then return true
if (ind == -1 | abs(a[ind] - b[ind]) <= k)
{
return true;
}
return false;
}
// Driver code
int main()
{
int n = 2, k = 4;
int a[] = {1, 5};
int b[] = {1, 1};
if (check(n, k, a, b))
{
printf("Yes");
}
else
{
printf("No");
}
return 0;
}
// This code is contributed by mits
Java
// Java implementation of the above approach
import java.util.Arrays;
class GFG
{
// Function to check if both
// sequences can be made equal
static boolean check(int n, int k,
int[] a, int[] b)
{
// Sorting both the arrays
Arrays.sort(a);
Arrays.sort(b);
// Flag to tell if there are
// more than one mismatch
boolean fl = false;
// To stores the index
// of mismatched element
int ind = -1;
for (int i = 0; i < n; i++)
{
if (a[i] != b[i])
{
// If there is more than one
// mismatch then return False
if (fl == true)
{
return false;
}
fl = true;
ind = i;
}
}
// If there is no mismatch or the
// difference between the
// mismatching elements is <= k
// then return true
if (ind == -1 | Math.abs(a[ind] - b[ind]) <= k)
{
return true;
}
return false;
}
// Driver code
public static void main(String[] args)
{
int n = 2, k = 4;
int[] a = {1, 5};
int b[] = {1, 1};
if (check(n, k, a, b))
{
System.out.println("Yes");
}
else
{
System.out.println("No");
}
}
}
// This code is contributed by 29AjayKumar
Python
# Python implementation of the above approach
# Function to check if both
# sequences can be made equal
def check(n, k, a, b):
# Sorting both the arrays
a.sort()
b.sort()
# Flag to tell if there are
# more than one mismatch
fl = False
# To stores the index
# of mismatched element
ind = -1
for i in range(n):
if(a[i] != b[i]):
# If there is more than one
# mismatch then return False
if(fl == True):
return False
fl = True
ind = i
# If there is no mismatch or the
# difference between the
# mismatching elements is <= k
# then return true
if(ind == -1 or abs(a[ind]-b[ind]) <= k):
return True
return False
n, k = 2, 4
a =[1, 5]
b =[1, 1]
if(check(n, k, a, b)):
print("Yes")
else:
print("No")
C#
// C# implementation of the above approach
using System;
class GFG
{
// Function to check if both
// sequences can be made equal
static bool check(int n, int k,
int[] a, int[] b)
{
// Sorting both the arrays
Array.Sort(a);
Array.Sort(b);
// Flag to tell if there are
// more than one mismatch
bool fl = false;
// To stores the index
// of mismatched element
int ind = -1;
for (int i = 0; i < n; i++)
{
if (a[i] != b[i])
{
// If there is more than one
// mismatch then return False
if (fl == true)
{
return false;
}
fl = true;
ind = i;
}
}
// If there is no mismatch or the
// difference between the
// mismatching elements is <= k
// then return true
if (ind == -1 | Math.Abs(a[ind] - b[ind]) <= k)
{
return true;
}
return false;
}
// Driver code
public static void Main()
{
int n = 2, k = 4;
int[] a = {1, 5};
int[] b = {1, 1};
if (check(n, k, a, b))
{
Console.WriteLine("Yes");
}
else
{
Console.WriteLine("No");
}
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// Javascript Implementation of above approach.
// Function to check if both
// sequences can be made equal
function check(n, k, a, b)
{
// Sorting both the arrays
a.sort();
b.sort();
// Flag to tell if there are
// more than one mismatch
let fl = false;
// To stores the index
// of mismatched element
let ind = -1;
for (let i = 0; i < n; i++)
{
if (a[i] != b[i])
{
// If there is more than one
// mismatch then return False
if (fl == true)
{
return false;
}
fl = true;
ind = i;
}
}
// If there is no mismatch or the
// difference between the
// mismatching elements is <= k
// then return true
if (ind == -1 | Math.abs(a[ind] - b[ind]) <= k)
{
return true;
}
return false;
}
// Driver code
let n = 2, k = 4;
let a = [1, 5];
let b = [1, 1];
if (check(n, k, a, b))
{
document.write("Yes");
}
else
{
document.write("No");
}
</script>
PHP
<?php
// PHP implementation of the
// above approach
// Function to check if both
// sequences can be made equal
function check($n, $k, &$a, &$b)
{
// Sorting both the arrays
sort($a);
sort($b);
// Flag to tell if there are
// more than one mismatch
$fl = False;
// To stores the index
// of mismatched element
$ind = -1;
for ($i = 0; $i < $n; $i++)
{
if($a[$i] != $b[$i])
{
// If there is more than one
// mismatch then return False
if($fl == True)
return False;
$fl = True;
$ind = $i;
}
}
// If there is no mismatch or the
// difference between the
// mismatching elements is <= k
// then return true
if($ind == -1 || abs($a[$ind] -
$b[$ind]) <= $k)
return True;
return False;
}
// Driver Code
$n = 2;
$k = 4;
$a = array(1, 5);
$b = array(1, 1);
if(check($n, $k, $a, $b))
echo "Yes";
else
echo "No";
// This code is contributed by ita_c
?>
Complexity Analysis:
- Time Complexity: O(nlog(n))
- Auxiliary Space: O(1)
Approach: Hash Map
Steps:
- Initialize an empty hash map, freqMap.
- Iterate over each element in sequence A and update the frequencies of elements in freqMap.
- Iterate over each element in sequence B and decrement the frequencies of elements in freqMap.
- If all frequencies in freqMap are 0 or within the range [-k, k], print "Yes".
- Otherwise, print "No".
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;
bool makeSequencesEqual(int k, const vector<int>& A,
const vector<int>& B)
{
unordered_map<int, int> freqMap;
// Update frequencies for sequence A
for (int num : A) {
freqMap[num]++;
}
// Decrement frequencies for sequence B
for (int num : B) {
freqMap[num]--;
}
for (const auto& pair : freqMap) {
int num = pair.first;
int freq = pair.second;
// Check if frequencies are within the range [-k, k]
if (freq != 0 && abs(freq) > k) {
return false;
}
}
return true;
}
// Driver Code
int main()
{
int k = 2;
vector<int> A = { 1, 2, 3 };
vector<int> B = { 3, 2, 1 };
// Check if sequences can be made equal
if (makeSequencesEqual(k, A, B)) {
cout << "Yes" << endl;
}
else {
cout << "No" << endl;
}
return 0;
}
Java
// Java implementation of the above approach
import java.util.HashMap;
import java.util.Map;
import java.util.ArrayList;
import java.util.List;
public class GFG {
public static boolean makeSequencesEqual(int k, List<Integer> A, List<Integer> B) {
Map<Integer, Integer> freqMap = new HashMap<>();
// Update frequencies for sequence A
for (int num : A) {
freqMap.put(num, freqMap.getOrDefault(num, 0) + 1);
}
// Decrement frequencies for sequence B
for (int num : B) {
freqMap.put(num, freqMap.getOrDefault(num, 0) - 1);
}
for (Map.Entry<Integer, Integer> entry : freqMap.entrySet()) {
int num = entry.getKey();
int freq = entry.getValue();
// Check if frequencies are within the range [-k, k]
if (freq != 0 && Math.abs(freq) > k) {
return false;
}
}
return true;
}
// Driver Code
public static void main(String[] args) {
int k = 2;
List<Integer> A = new ArrayList<>();
A.add(1);
A.add(2);
A.add(3);
List<Integer> B = new ArrayList<>();
B.add(3);
B.add(2);
B.add(1);
// Check if sequences can be made equal
if (makeSequencesEqual(k, A, B)) {
System.out.println("Yes");
} else {
System.out.println("No");
}
}
}
// This code is contributed by Vaibhav Nandan
Python
def make_sequences_equal(k, A, B):
freq_map = {}
# Update frequencies for sequence A
for num in A:
freq_map[num] = freq_map.get(num, 0) + 1
# Decrement frequencies for sequence B
for num in B:
freq_map[num] = freq_map.get(num, 0) - 1
for num, freq in freq_map.items():
# Check if frequencies are within the range [-k, k]
if freq != 0 and abs(freq) > k:
return False
return True
# Driver Code
if __name__ == "__main__":
k = 2
A = [1, 2, 3]
B = [3, 2, 1]
# Check if sequences can be made equal
if make_sequences_equal(k, A, B):
print("Yes")
else:
print("No")
C#
using System;
using System.Collections.Generic;
class GFG {
static bool MakeSequencesEqual(int k, List<int> A,
List<int> B)
{
Dictionary<int, int> freqMap
= new Dictionary<int, int>();
// Update frequencies for sequence A
foreach(int num in A)
{
if (freqMap.ContainsKey(num))
freqMap[num]++;
else
freqMap[num] = 1;
}
// Decrement frequencies for sequence B
foreach(int num in B)
{
if (freqMap.ContainsKey(num))
freqMap[num]--;
else
freqMap[num] = -1;
}
foreach(KeyValuePair<int, int> pair in freqMap)
{
int num = pair.Key;
int freq = pair.Value;
// Check if frequencies are within the range
// [-k, k]
if (freq != 0 && Math.Abs(freq) > k) {
return false;
}
}
return true;
}
// Driver Code
static void Main()
{
int k = 2;
List<int> A = new List<int>() { 1, 2, 3 };
List<int> B = new List<int>() { 3, 2, 1 };
// Check if sequences can be made equal
if (MakeSequencesEqual(k, A, B)) {
Console.WriteLine("Yes");
}
else {
Console.WriteLine("No");
}
}
}
JavaScript
function makeSequencesEqual(k, A, B) {
const freqMap = new Map();
// Update frequencies for sequence A
for (let num of A) {
freqMap.set(num, (freqMap.get(num) || 0) + 1);
}
// Decrement frequencies for sequence B
for (let num of B) {
freqMap.set(num, (freqMap.get(num) || 0) - 1);
}
for (let [num, freq] of freqMap) {
// Check if frequencies are within the range [-k, k]
if (freq !== 0 && Math.abs(freq) > k) {
return false;
}
}
return true;
}
// Driver Code
const k = 2;
const A = [1, 2, 3];
const B = [3, 2, 1];
// Check if sequences can be made equal
if (makeSequencesEqual(k, A, B)) {
console.log("Yes");
} else {
console.log("No");
}
Time Complexity: O(n), where n is the total number of elements in sequences A and B.
Auxiliary Space: O(m), where m is the number of unique elements in sequences A and B.
Similar Reads
Find if it is possible to make all elements of an array equal by the given operations Given an array arr[], the task is to make all the array elements equal with the given operation. In a single operation, any element of the array can be either multiplied by 3 or by 5 any number of times. If it's possible to make all the array elements equal with the given operation then print Yes el
7 min read
Check if Arrays can be made equal by Replacing elements with their number of Digits Given two arrays A[] and B[] of length N, the task is to check if both arrays can be made equal by performing the following operation at most K times: Choose any index i and either change Ai to the number of digits Ai have or change Bi to the number of digits Bi have. Examples: Input: N = 4, K = 1,
10 min read
Check if it is possible to make all strings of A[] equal to B[] using given operations Consider two arrays, A[] and B[], each containing N strings. These strings are composed solely of digits ranging from 0 to 9. Then your task is to output YES or NO, by following that all the strings of A[] can be made equal to B[] for each i (1 <= i <= N) in at most K cost. The following opera
9 min read
Check if Array Elemnts can be Made Equal with Given Operations Given an array arr[] consisting of N integers and following are the three operations that can be performed using any external number X. Add X to an array element once.Subtract X from an array element once.Perform no operation on the array element.Note : Only one operation can be performed on a numbe
6 min read
Minimize operations to make both arrays equal by decrementing a value from either or both Given two arrays A[] and B[] having N integers, the task is to find the minimum operations required to make all the elements of both the array equal where at each operation, the following can be done: Decrement the value of A[i] by 1 where i lies in the range [0, N).Decrement the value of B[i] by 1
7 min read