Check if the array can be sorted only if the elements on given positions can be swapped
Last Updated :
12 Apr, 2023
Given an array arr[] of length N and another array P[] containing {a1, a2, ... ak} which represents the positions of the given array arr[], the task is to check if the array can be sorted by only swapping the elements' arr[ai], arr[ai+1] where 'i' is some element in the array P[].
Examples:
Input: arr[] = {3, 2, 1}, P[] = {1, 2}
Output: Yes
Explanation:
Initially, i = 1 (i.e.) first element and second element are swapped. Therefore, arr[0] <=> arr[1]. arr[] = {2, 3, 1}.
Similarly, i = 2 (i.e.) second element and third element are swapped. arr[] = {2, 1, 3}.
Finally, i = 1 (i.e.) first element and second element are swapped. arr[] = {1, 2, 3}.
Since this array is sorted, therefore, the given array can be sorted.
Input: arr[] = {5, 3, -4, 1, 12}, P[] = {2, 4, 3}
Output: No
Approach: The idea is to use two pointer approach to check if the array can be sorted or not.
- Initially, we create a position array pos[] of size N. This array will be used to mark the given positions in the array P[]. That is:
if j = ai (1 ? i ? K)
then the element pos[ai-1] will be 1
else 0
- Now, iterate through the array and check if pos[i] = 1 or not.
- If we encounter the pos[i]=1, we store the iterator in a temporary variable, and then we increment the iterator with value 1, till we have pos[i]=1 continuously, i.e.,
j = i
while (j < N and pos[j])
j=j+1
- After this increment, we sort this segment that we obtained from i to j+1 and finally, check after the position j, in the vector that we have to check, because we have sorted till this segment.
Sort(arr[i] to arr[j+1])
i=j
- Finally, after this loop completion, we have to check if the array has been sorted or not.
Below is the implementation of the above approach:
C++
// C++ program to check if the array
// can be sorted only if the elements
// on the given positions can be swapped
#include <bits/stdc++.h>
using namespace std;
// Function to check if the array can
// be sorted only if the elements on
// the given positions can be swapped
void check_vector(vector<int> A, int n,
vector<int> p)
{
// Creating an array for marking
// the positions
vector<int> pos(A.size());
// Iterating through the array and
// mark the positions
for (int i = 0; i < p.size(); i++) {
pos[p[i] - 1] = 1;
}
int flag = 1;
// Iterating through the given array
for (int i = 0; i < n; i++) {
if (pos[i] == 0)
continue;
int j = i;
// If pos[i] is 1, then incrementing
// till 1 is continuously present in pos
while (j < n && pos[j])
++j;
// Sorting the required segment
sort(A.begin() + i, A.begin() + j + 1);
i = j;
}
// Checking if the vector is sorted or not
for (int i = 0; i < n - 1; i++) {
if (A[i] > A[i + 1]) {
flag = 0;
break;
}
}
// Print yes if it is sorted
if (flag == 1)
cout << "Yes";
else
cout << "No";
}
// Driver code
int main()
{
vector<int> A{ 3, 2, 1 };
vector<int> p{ 1, 2 };
check_vector(A, A.size(), p);
return 0;
}
Java
// Java program to check if the array
// can be sorted only if the elements
// on the given positions can be swapped
import java.util.Arrays;
class GFG{
// Function to check if the array can
// be sorted only if the elements on
// the given positions can be swapped
public static void check_vector(int[] A,
int n,
int[] p)
{
// Creating an array for marking
// the positions
int[] pos = new int[A.length];
// Iterating through the array and
// mark the positions
for(int i = 0; i < p.length; i++)
{
pos[p[i] - 1] = 1;
}
int flag = 1;
// Iterating through the given array
for(int i = 0; i < n; i++)
{
if (pos[i] == 0)
continue;
int j = i;
// If pos[i] is 1, then incrementing
// till 1 is continuously present in pos
while (j < n && pos[j] != 0)
++j;
// Sorting the required segment
Arrays.sort(A, i, j + 1);
i = j;
}
// Checking if the vector is sorted or not
for(int i = 0; i < n - 1; i++)
{
if (A[i] > A[i + 1])
{
flag = 0;
break;
}
}
// Print yes if it is sorted
if (flag == 1)
System.out.print("Yes");
else
System.out.print("No");
}
// Driver code
public static void main(String[] args)
{
int A[] = { 3, 2, 1 };
int p[] = { 1, 2 };
check_vector(A, A.length, p);
}
}
// This code is contributed by divyeshrabadiya07
Python3
# Python3 program to check if the array
# can be sorted only if the elements
# on the given positions can be swapped
# Function to check if the array can
# be sorted only if the elements on
# the given positions can be swapped
def check_vector(A, n, p):
# Creating an array for marking
# the positions
pos = [0 for i in range(len(A))]
# Iterating through the array and
# mark the positions
for i in range(len(p)):
pos[p[i] - 1] = 1
flag = 1
# Iterating through the given array
for i in range(n):
if (pos[i] == 0):
continue
j = i
# If pos[i] is 1, then incrementing
# till 1 is continuously present in pos
while (j < n and pos[j]):
j += 1
# Sorting the required segment
p = A[: i]
q = A[i : i + j + 1]
r = A[i + j + 1 : len(A)]
q.sort(reverse = False)
A = p + q + r
i = j
# Checking if the vector is sorted or not
for i in range(n - 1):
if (A[i] > A[i + 1]):
flag = 0
break
# Print yes if it is sorted
if (flag == 1):
print("Yes")
else:
print("No");
# Driver code
if __name__ == '__main__':
A = [ 3, 2, 1 ]
p = [ 1, 2 ]
check_vector(A,len(A), p)
# This code is contributed by Samarth
C#
// C# program to check
// if the array can be
// sorted only if the
// elements on the given
// positions can be swapped
using System;
class GFG{
// Function to check if the array can
// be sorted only if the elements on
// the given positions can be swapped
public static void check_vector(int[] A,
int n,
int[] p)
{
// Creating an array for marking
// the positions
int[] pos = new int[A.Length];
// Iterating through the array and
// mark the positions
for(int i = 0; i < p.Length; i++)
{
pos[p[i] - 1] = 1;
}
int flag = 1;
// Iterating through the given array
for(int i = 0; i < n; i++)
{
if (pos[i] == 0)
continue;
int j = i;
// If pos[i] is 1, then
// incrementing till 1
// is continuously present in pos
while (j < n && pos[j] != 0)
++j;
// Sorting the required segment
Array.Sort(A, i, j + 1);
i = j;
}
// Checking if the vector
// is sorted or not
for(int i = 0; i < n - 1; i++)
{
if (A[i] > A[i + 1])
{
flag = 0;
break;
}
}
// Print yes if it is sorted
if (flag == 1)
Console.Write("Yes");
else
Console.Write("No");
}
// Driver code
public static void Main()
{
int[] A = {3, 2, 1};
int[] p = {1, 2};
check_vector(A, A.Length, p);
}
}
// This code is contributed by Chitranayal
JavaScript
<script>
// Javascript program to check if the array
// can be sorted only if the elements
// on the given positions can be swapped
// Function to check if the array can
// be sorted only if the elements on
// the given positions can be swapped
function check_vector(A, n, p)
{
// Creating an array for marking
// the positions
var pos = A.length;
// Iterating through the array and
// mark the positions
for (var i = 0; i < p.length; i++) {
pos[p[i] - 1] = 1;
}
var flag = 1;
// Iterating through the given array
for (var i = 0; i < n; i++) {
if (pos[i] == 0)
continue;
var j = i;
// If pos[i] is 1, then incrementing
// till 1 is continuously present in pos
while (j < n && pos[j])
++j;
// Sorting the required segment
A = Array.prototype.concat(
A.slice(0, i),
A.slice(i+1, j+1).sort((a,b)=>a-b),
A.slice(j+2).sort((a,b)=>a-b));
i = j;
}
// Checking if the vector is sorted or not
for (var i = 0; i < n - 1; i++) {
if (A[i] > A[i + 1]) {
flag = 0;
break;
}
}
// Print yes if it is sorted
if (flag == 1)
document.write( "Yes");
else
document.write( "No");
}
// Driver code
var A = [ 3, 2, 1 ];
var p = [ 1, 2 ];
check_vector(A, A.length, p);
// This code is contributed by noob2000.
</script>
Time Complexity: O(N * log(N)), where N is the size of the array.
Space Complexity: O(N) as pos vector has been created. Here, N is the size of the array.
Similar Reads
Check if the array can be sorted using swaps between given indices only
Given an array arr[] of size N consisting of distinct integers from range [0, N - 1] arranged in a random order. Also given a few pairs where each pair denotes the indices where the elements of the array can be swapped. There is no limit on the number of swaps allowed. The task is to find if it is p
15+ min read
Check if given array is almost sorted (elements are at-most one position away)
Given an array with n distinct elements. An array is said to be almost sorted (non-decreasing) if any of its elements can occur at a maximum of 1 distance away from their original places in the sorted array. We need to find whether the given array is almost sorted or not.Examples: Input : arr[] = {1
11 min read
Check if array can be sorted by swapping adjacent elements of opposite parity
Given an array A of size n, the task is to check if the array can be sorted in increasing order, if the only operation allowed is swapping the adjacent elements if they are of opposite parity. The operation can be done any number of times. Examples: Input : n = 4, A = [1, 6, 51, 16]Output: YESExplan
9 min read
Check if array can be sorted by swapping pairs having GCD equal to the smallest element in the array
Given an array arr[] of size N, the task is to check if an array can be sorted by swapping only the elements whose GCD (greatest common divisor) is equal to the smallest element of the array. Print âYesâ if it is possible to sort the array. Otherwise, print âNoâ. Examples: Input: arr[] = {4, 3, 6, 6
11 min read
Check if an Array can be Sorted by picking only the corner Array elements
Given an array arr[] consisting of N elements, the task is to check if the given array can be sorted by picking only corner elements i.e., elements either from left or right side of the array can be chosen. Examples: Input: arr[] = {2, 3, 4, 10, 4, 3, 1} Output: Yes Explanation: The order of picking
5 min read
Check if given Array can be made a permutation of 1 to N by reducing elements by half
Given an array nums[] of size N, the task is to check whether the given array can be converted into a permutation of 1 to N after performing given operations any number of times (may be 0). An operation is defined as: Pick any element of the array say 'x', and replace it with 'x/2'. Note: In a permu
6 min read
Check if Array can be sorted in non-decreasing order using given operations
Given an array arr[] of size N consisting of positive integers, the task is to check if the array can be sorted in non-decreasing order by performing the following operations: Select two adjacent elements.Swap the elements and invert their signs.All elements in the sorted array received at the end,
8 min read
Check if an array of pairs can be sorted by swapping pairs with different first elements
Given an array arr[] consisting of N pairs, where each pair represents the value and ID respectively, the task is to check if it is possible to sort the array by the first element by swapping only pairs having different IDs. If it is possible to sort, then print "Yes". Otherwise, print "No". Example
11 min read
Check if the relative ordering of elements in given two Arrays is same or not
Given two arrays A[] and B[] each of size N, the task is to check if the sequencing of both the arrays is the same or not. If the sequencing of both the arrays is same, the print Yes otherwise print No.Examples:Input: A[] = { 10, 12, 9, 11 }, B[] = { 2, 7, -3, 5 };Output: YesExplanation: In both the
7 min read
Check if array can be sorted by swapping pairs with GCD of set bits count equal to that of the smallest array element
Given an array arr[] consisting of N integers, the task is to check if it is possible to sort the array using the following swap operations: Swapping of two numbers is valid only if the Greatest Common Divisor of count of set bits of the two numbers is equal to the number of set bits in the smallest
9 min read