Check if Permutation of Pattern is Substring
Last Updated :
23 Jul, 2025
Given two strings txt and pat having lowercase letters, the task is to check if any permutation of pat is a substring of txt.
Examples:
Input: txt = "geeks", pat = "eke"
Output: true
Explanation: "eek" is a permutation of "eke" which exists in "geeks".
Input: txt = "programming", pat = "rain"
Output: false
Explanation: No permutation of "rain" exists as a substring in "programming".
[Naive Approach] Checking all possible substrings
The idea is to iterate over all possible substrings of txt having the same length as pat. For each substring of txt, check if pat is a permutation of the substring. Two strings are said to be permutations of each other if they contain the same characters with the same frequencies, but possibly in a different order. So, we can match the frequency of each character in both the strings to check if they are permutations of each other or not.
C++
// C++ Program to check if any permutation of pattern
// is substring by checking all possible substrings
#include <iostream>
#include <vector>
using namespace std;
const int MAX_CHAR = 26;
bool arePermutations(string &txt, int startIdx, string &pat) {
vector<int> freq(MAX_CHAR, 0);
for (int i = 0; i < pat.length(); i++) {
// Decrement the count of character in txt
freq[txt[startIdx + i] - 'a'] -= 1;
// Increment the count of character in pat
freq[pat[i] - 'a'] += 1;
}
for (int i = 0; i < MAX_CHAR; i++) {
if (freq[i] != 0)
return false;
}
return true;
}
bool search(string &txt, string &pat) {
int n = txt.length();
int m = pat.length();
for (int i = 0; i < n - m + 1; i++) {
// Check if substring in txt starting from i
// is a permutation of pat
if (arePermutations(txt, i, pat))
return true;
}
return false;
}
int main() {
string txt = "geeks";
string pat = "eke";
if (search(txt, pat))
cout << "true";
else
cout << "false";
return 0;
}
C
// C Program to check if any permutation of pattern
// is substring by checking all possible substrings
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#define MAX_CHAR 26
bool arePermutations(char *txt, int startIdx, char *pat) {
int freq[MAX_CHAR] = {0};
int i;
for (i = 0; i < strlen(pat); i++) {
// Increment the count of character in txt
freq[txt[startIdx + i] - 'a'] += 1;
// Decrement the count of character in pat
freq[pat[i] - 'a'] -= 1;
}
for (i = 0; i < MAX_CHAR; i++) {
if (freq[i] != 0)
return false;
}
return true;
}
int search(char *txt, char *pat) {
int n = strlen(txt);
int m = strlen(pat);
int i;
for (i = 0; i < n - m + 1; i++) {
// Check if substring in txt starting from i
// is a permutation of pat
if (arePermutations(txt, i, pat))
return true;
}
return false;
}
int main() {
char txt[] = "geeks";
char pat[] = "eke";
if (search(txt, pat))
printf("true\n");
else
printf("false\n");
return 0;
}
Java
// Java Program to check if any permutation of pattern
// is substring by checking all possible substrings
class GfG {
static final int MAX_CHAR = 26;
static boolean arePermutations(String txt, int startIdx, String pat) {
int[] freq = new int[MAX_CHAR];
for (int i = 0; i < pat.length(); i++) {
// Increment the count of character in txt
freq[txt.charAt(startIdx + i) - 'a'] += 1;
// Decrement the count of character in pat
freq[pat.charAt(i) - 'a'] -= 1;
}
for (int i = 0; i < MAX_CHAR; i++) {
if (freq[i] != 0)
return false;
}
return true;
}
static boolean search(String txt, String pat) {
int n = txt.length();
int m = pat.length();
for (int i = 0; i < n - m + 1; i++) {
// Check if substring in txt starting from i
// is a permutation of pat
if (arePermutations(txt, i, pat))
return true;
}
return false;
}
public static void main(String[] args) {
String txt = "geeks";
String pat = "eke";
if (search(txt, pat))
System.out.println("true");
else
System.out.println("false");
}
}
Python
# Python Program to check if any permutation of pattern
# is substring by checking all possible substrings
MAX_CHAR = 26
def arePermutations(txt, startIdx, pat):
freq = [0] * MAX_CHAR
for i in range(len(pat)):
# Increment the count of character in txt
freq[ord(txt[startIdx + i]) - ord('a')] += 1
# Decrement the count of character in pat
freq[ord(pat[i]) - ord('a')] -= 1
for i in range(MAX_CHAR):
if freq[i] != 0:
return False
return True
def search(txt, pat):
n = len(txt)
m = len(pat)
for i in range(n - m + 1):
# Check if substring in txt starting from i
# is a permutation of pat
if arePermutations(txt, i, pat):
return True
return False
if __name__ == "__main__":
txt = "geeks"
pat = "eke"
if search(txt, pat):
print("true")
else:
print("false")
C#
// C# Program to check if any permutation of pattern
// is substring by checking all possible substrings
using System;
class GfG {
const int MAX_CHAR = 26;
static bool arePermutations(string txt, int startIdx, string pat) {
int[] freq = new int[MAX_CHAR];
for (int i = 0; i < pat.Length; i++) {
// Increment the count of character in txt
freq[txt[startIdx + i] - 'a'] += 1;
// Decrement the count of character in pat
freq[pat[i] - 'a'] -= 1;
}
for (int i = 0; i < MAX_CHAR; i++) {
if (freq[i] != 0)
return false;
}
return true;
}
static bool search(string txt, string pat) {
int n = txt.Length;
int m = pat.Length;
for (int i = 0; i < n - m + 1; i++) {
// Check if substring in txt starting from i
// is a permutation of pat
if (arePermutations(txt, i, pat))
return true;
}
return false;
}
static void Main() {
string txt = "geeks";
string pat = "eke";
if (search(txt, pat))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
JavaScript
// JavaScript Program to check if any permutation of pattern
// is substring by checking all possible substrings
const MAX_CHAR = 26;
function arePermutations(txt, startIdx, pat) {
let freq = new Array(MAX_CHAR).fill(0);
for (let i = 0; i < pat.length; i++) {
// Increment the count of character in txt
freq[txt.charCodeAt(startIdx + i) - 'a'.charCodeAt(0)] += 1;
// Decrement the count of character in pat
freq[pat.charCodeAt(i) - 'a'.charCodeAt(0)] -= 1;
}
for (let i = 0; i < MAX_CHAR; i++) {
if (freq[i] !== 0)
return false;
}
return true;
}
function search(txt, pat) {
let n = txt.length;
let m = pat.length;
for (let i = 0; i < n - m + 1; i++) {
// Check if substring in txt starting from i
// is a permutation of pat
if (arePermutations(txt, i, pat))
return true;
}
return false;
}
// Driver Code
let txt = "geeks";
let pat = "eke";
if (search(txt, pat))
console.log("true");
else
console.log("false");
Time Complexity: O(n*m), where n is the length of txt and m is the length of pat.
Auxiliary Space: O(MAX_CHAR), where MAX_CHAR = 26 as txt and pat have lowercase letters only.
[Expected Approach] Using Sliding Window
The idea is similar to the previous approach where we check if pat is a permutation of any substring of txt but instead of comparing each substring from the beginning, we can use Sliding Window Technique and slide a window of the same size as pat. When a new character is added to the window, we increase its frequency by 1 and when a character is removed from the window, we decrease its frequency by 1.
C++
// C++ Program to check if any permutation of string
// is substring using Sliding Window Technique
#include <iostream>
#include <vector>
using namespace std;
const int MAX_CHAR = 26;
// check if all characters have 0 frequency
bool check(vector<int> &freq) {
for(int i = 0; i < MAX_CHAR; i++) {
if(freq[i] != 0)
return false;
}
return true;
}
bool search(string &txt, string &pat) {
int n = txt.length();
int m = pat.length();
vector<int> freq(MAX_CHAR, 0);
// construct the first window
for(int i = 0; i < m; i++) {
freq[txt[i] - 'a'] += 1;
freq[pat[i] - 'a'] -= 1;
}
// Check for first window
if(check(freq))
return true;
for (int i = m; i < n; i++) {
// Add the ith character into the window
freq[txt[i] - 'a'] += 1;
// Remove the (i - m)th character from the window
freq[txt[i - m] - 'a'] -= 1;
// Check for the current window
if (check(freq))
return true;
}
return false;
}
int main() {
string txt = "geeks";
string pat = "eke";
if (search(txt, pat))
cout << "true";
else
cout << "false";
return 0;
}
C
// C Program to check if any permutation of string
// is substring using Sliding Window Technique
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#define MAX_CHAR 26
// check if all characters have 0 frequency
bool check(int freq[]) {
for (int i = 0; i < MAX_CHAR; i++) {
if (freq[i] != 0)
return false;
}
return true;
}
bool search(char *txt, char *pat) {
int n = strlen(txt);
int m = strlen(pat);
// construct the first window
int freq[MAX_CHAR] = {0};
for (int i = 0; i < m; i++) {
freq[txt[i] - 'a'] += 1;
freq[pat[i] - 'a'] -= 1;
}
// Check for first window
if (check(freq))
return true;
for (int i = m; i < n; i++) {
// Add the ith character into the window
freq[txt[i] - 'a'] += 1;
// Remove the (i - m)th character from the window
freq[txt[i - m] - 'a'] -= 1;
// Check for the current window
if (check(freq))
return true;
}
return false;
}
int main() {
char txt[] = "geeks";
char pat[] = "eke";
if (search(txt, pat))
printf("true");
else
printf("false");
return 0;
}
Java
// Java Program to check if any permutation of string
// is substring using Sliding Window Technique
import java.util.*;
class GfG {
static final int MAX_CHAR = 26;
// check if all characters have 0 frequency
static boolean check(int[] freq) {
for (int i = 0; i < MAX_CHAR; i++) {
if (freq[i] != 0)
return false;
}
return true;
}
static boolean search(String txt, String pat) {
int n = txt.length();
int m = pat.length();
// construct the first window
int[] freq = new int[MAX_CHAR];
Arrays.fill(freq, 0);
for (int i = 0; i < m; i++) {
freq[txt.charAt(i) - 'a'] += 1;
freq[pat.charAt(i) - 'a'] -= 1;
}
// Check for first window
if (check(freq))
return true;
for (int i = m; i < n; i++) {
// Add the ith character into the window
freq[txt.charAt(i) - 'a'] += 1;
// Remove the (i - m)th character from the window
freq[txt.charAt(i - m) - 'a'] -= 1;
// Check for the current window
if (check(freq))
return true;
}
return false;
}
public static void main(String[] args) {
String txt = "geeks";
String pat = "eke";
if (search(txt, pat))
System.out.println("true");
else
System.out.println("false");
}
}
Python
# Python Program to check if any permutation of string
# is substring using Sliding Window Technique
MAX_CHAR = 26
# check if all characters have 0 frequency
def check(freq):
for i in range(MAX_CHAR):
if freq[i] != 0:
return False
return True
def search(txt, pat):
n = len(txt)
m = len(pat)
# construct the first window
freq = [0] * MAX_CHAR
for i in range(m):
freq[ord(txt[i]) - ord('a')] += 1
freq[ord(pat[i]) - ord('a')] -= 1
# Check for first window
if check(freq):
return True
for i in range(m, n):
# Add the ith character into the window
freq[ord(txt[i]) - ord('a')] += 1
# Remove the (i - m)th character from the window
freq[ord(txt[i - m]) - ord('a')] -= 1
# Check for the current window
if check(freq):
return True
return False
if __name__ == "__main__":
txt = "geeks"
pat = "eke"
if search(txt, pat):
print("true")
else:
print("false")
C#
// C# Program to check if any permutation of string
// is substring using Sliding Window Technique
using System;
class GfG {
const int MAX_CHAR = 26;
// check if all characters have 0 frequency
static bool check(int[] freq) {
for (int i = 0; i < MAX_CHAR; i++) {
if (freq[i] != 0)
return false;
}
return true;
}
static bool search(string txt, string pat) {
int n = txt.Length;
int m = pat.Length;
// construct the first window
int[] freq = new int[MAX_CHAR];
for (int i = 0; i < m; i++) {
freq[txt[i] - 'a'] += 1;
freq[pat[i] - 'a'] -= 1;
}
// Check for first window
if (check(freq))
return true;
for (int i = m; i < n; i++) {
// Add the ith character into the window
freq[txt[i] - 'a'] += 1;
// Remove the (i - m)th character from the window
freq[txt[i - m] - 'a'] -= 1;
// Check for the current window
if (check(freq))
return true;
}
return false;
}
static void Main() {
string txt = "geeks";
string pat = "eke";
if (search(txt, pat))
Console.WriteLine("true");
else
Console.WriteLine("false");
}
}
JavaScript
// JavaScript Program to check if any permutation of string
// is substring using Sliding Window Technique
const MAX_CHAR = 26;
// check if all characters have 0 frequency
function check(freq) {
for (let i = 0; i < MAX_CHAR; i++) {
if (freq[i] !== 0)
return false;
}
return true;
}
function search(txt, pat) {
let n = txt.length;
let m = pat.length;
// construct the first window
let freq = new Array(MAX_CHAR).fill(0);
for (let i = 0; i < m; i++) {
freq[txt.charCodeAt(i) - 'a'.charCodeAt(0)] += 1;
freq[pat.charCodeAt(i) - 'a'.charCodeAt(0)] -= 1;
}
// Check for first window
if (check(freq))
return true;
for (let i = m; i < n; i++) {
// Add the ith character into the window
freq[txt.charCodeAt(i) - 'a'.charCodeAt(0)] += 1;
// Remove the (i - m)th character from the window
freq[txt.charCodeAt(i - m) - 'a'.charCodeAt(0)] -= 1;
// Check for the current window
if (check(freq))
return true;
}
return false;
}
// Driver Code
let txt = "geeks";
let pat = "eke";
if (search(txt, pat))
console.log("true");
else
console.log("false");
Time Complexity: O(n*MAX_CHAR), where n is the length of txt and MAX_CHAR = 26 as txt and pat have lowercase letters only.
Auxiliary Space: O(1)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem