Check if one string can be converted to other using given operation
Last Updated :
12 Jul, 2025
Given two strings S and T of same length. The task is to determine whether or not we can build a string A(initially empty) equal to string T by performing the below operations.
- Delete the first character of S and add it at the front of A.
- Delete the first character of S and add it at the back of A.
Examples:
Input: S = "abab" T = "baab"
Output: YES
Explanation:
Add 'a' at front of A, then A = "a" and S = "bab"
Add 'b' at front of A, then A = "ba" and S = "ab"
Add 'a' at back of A, then A = "baa" and S = "b"
Add 'b' at back of A, then A = "baab" and S = ""
So we can make string A equal to string T
Input: S = "geeks" T = "Teeks"
Output: NO
Approach: The idea is to use Dynamic Programming to solve this problem.
There are two possible moves for every character( front move or back move ). So, for each character, we will check if it is possible to add the character in the front or back of the new string. If it's possible, we will move to the next character. If it's not possible, then the operation will stop at that point and No will be printed.
- Firstly we will make a 2D boolean array dp[][] having rows and columns equal to the length of string S, where dp[i][j] = 1 indicates that all characters of string S from index i to n-1 can be placed in the new string A with j front moves such that it becomes equal to string T.
- We can traverse string S from the back and for each character update dp[][] in two ways, if we take the (i-1)-th character as a front move or (i-1)-th character as a back move.
- Finally, we will check if any value at the 1st row is equal to one or not.
Below is the implementation of the above approach
C++
// C++ implementation of above
// approach
#include <bits/stdc++.h>
using namespace std;
// Function that prints whether
// is it possible to make a
// string equal to T by
// performing given operations
void twoStringsEquality(string s,
string t)
{
int n = s.length();
vector<vector<int> > dp(
n, vector<int>(
n + 1, 0));
// Base case, if we put the
// last character at front
// of A
if (s[n - 1] == t[0])
dp[n - 1][1] = 1;
// Base case, if we put the
// last character at back
// of A
if (s[n - 1] == t[n - 1])
dp[n - 1][0] = 1;
for (int i = n - 1; i > 0; i--) {
for (int j = 0; j <= n - i; j++) {
// Condition if current
// sequence is matchable
if (dp[i][j]) {
// Condition for front
// move to (i - 1)th
// character
if (s[i - 1] == t[j])
dp[i - 1][j + 1] = 1;
// Condition for back
// move to (i - 1)th
// character
if (s[i - 1] == t[i + j - 1])
dp[i - 1][j] = 1;
}
}
}
bool ans = false;
for (int i = 0; i <= n; i++) {
// Condition if it is
// possible to make
// string A equal to
// string T
if (dp[0][i] == 1) {
ans = true;
break;
}
}
// Print final
// answer
if (ans == true)
cout << "Yes"
<< "\n";
else
cout << "No"
<< "\n";
}
// Driver Code
int main()
{
string S = "abab";
string T = "baab";
twoStringsEquality(S, T);
return 0;
}
Java
// Java implementation of above
// approach
import java.util.*;
class GFG{
// Function that prints whether
// is it possible to make a
// String equal to T by
// performing given operations
static void twoStringsEquality(String s,
String t)
{
int n = s.length();
int [][]dp = new int[n][n + 1];
// Base case, if we put the
// last character at front
// of A
if (s.charAt(n - 1) == t.charAt(0))
dp[n - 1][1] = 1;
// Base case, if we put the
// last character at back
// of A
if (s.charAt(n - 1) == t.charAt(n - 1))
dp[n - 1][0] = 1;
for(int i = n - 1; i > 0; i--)
{
for(int j = 0; j <= n - i; j++)
{
// Condition if current
// sequence is matchable
if (dp[i][j] > 0)
{
// Condition for front
// move to (i - 1)th
// character
if (s.charAt(i - 1) ==
t.charAt(j))
dp[i - 1][j + 1] = 1;
// Condition for back
// move to (i - 1)th
// character
if (s.charAt(i - 1) ==
t.charAt(i + j -1))
dp[i - 1][j] = 1;
}
}
}
boolean ans = false;
for(int i = 0; i <= n; i++)
{
// Condition if it is possible
// to make String A equal to
// String T
if (dp[0][i] == 1)
{
ans = true;
break;
}
}
// Print final answer
if (ans == true)
System.out.print("Yes" + "\n");
else
System.out.print("No" + "\n");
}
// Driver Code
public static void main(String[] args)
{
String S = "abab";
String T = "baab";
twoStringsEquality(S, T);
}
}
// This code is contributed by 29AjayKumar
Python3
# Python3 implementation of above
# approach
# Function that prints whether
# is it possible to make a
# equal to T by
# performing given operations
def twoStringsEquality(s, t):
n = len(s)
dp = [[0 for i in range(n + 1)]
for i in range(n)]
# Base case, if we put the
# last character at front
# of A
if (s[n - 1] == t[0]):
dp[n - 1][1] = 1
# Base case, if we put the
# last character at back
# of A
if (s[n - 1] == t[n - 1]):
dp[n - 1][0] = 1
for i in range(n - 1, -1, -1):
for j in range(n - i + 1):
# Condition if current
# sequence is matchable
if (dp[i][j]):
# Condition for front
# move to (i - 1)th
# character
if (s[i - 1] == t[j]):
dp[i - 1][j + 1] = 1
# Condition for back
# move to (i - 1)th
# character
if (s[i - 1] == t[i + j - 1]):
dp[i - 1][j] = 1
ans = False
for i in range(n + 1):
# Condition if it is
# possible to make
# A equal to T
if (dp[0][i] == 1):
ans = True
break
# Print final answer
if (ans == True):
print("Yes")
else:
print("No")
# Driver Code
if __name__ == '__main__':
S = "abab"
T = "baab"
twoStringsEquality(S, T)
# This code is contributed by mohit kumar 29
C#
// C# implementation of above
// approach
using System;
class GFG{
// Function that prints whether
// is it possible to make a
// String equal to T by
// performing given operations
static void twoStringsEquality(String s,
String t)
{
int n = s.Length;
int [,]dp = new int[n, n + 1];
// Base case, if we put the
// last character at front
// of A
if (s[n - 1] == t[0])
dp[n - 1, 1] = 1;
// Base case, if we put the
// last character at back
// of A
if (s[n - 1] == t[n - 1])
dp[n - 1, 0] = 1;
for(int i = n - 1; i > 0; i--)
{
for(int j = 0; j <= n - i; j++)
{
// Condition if current
// sequence is matchable
if (dp[i, j] > 0)
{
// Condition for front
// move to (i - 1)th
// character
if (s[i - 1] == t[j])
dp[i - 1, j + 1] = 1;
// Condition for back
// move to (i - 1)th
// character
if (s[i - 1] == t[i + j - 1])
dp[i - 1, j] = 1;
}
}
}
bool ans = false;
for(int i = 0; i <= n; i++)
{
// Condition if it is possible
// to make String A equal to
// String T
if (dp[0, i] == 1)
{
ans = true;
break;
}
}
// Print readonly answer
if (ans == true)
Console.Write("Yes" + "\n");
else
Console.Write("No" + "\n");
}
// Driver Code
public static void Main(String[] args)
{
String S = "abab";
String T = "baab";
twoStringsEquality(S, T);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// Javascript implementation of above
// approach
// Function that prints whether
// is it possible to make a
// string equal to T by
// performing given operations
function twoStringsEquality(s, t)
{
var n = s.length;
var dp = Array.from(Array(n), ()=>Array(n+1).fill(0));
// Base case, if we put the
// last character at front
// of A
if (s[n - 1] == t[0])
dp[n - 1][1] = 1;
// Base case, if we put the
// last character at back
// of A
if (s[n - 1] == t[n - 1])
dp[n - 1][0] = 1;
for (var i = n - 1; i > 0; i--) {
for (var j = 0; j <= n - i; j++) {
// Condition if current
// sequence is matchable
if (dp[i][j]) {
// Condition for front
// move to (i - 1)th
// character
if (s[i - 1] == t[j])
dp[i - 1][j + 1] = 1;
// Condition for back
// move to (i - 1)th
// character
if (s[i - 1] == t[i + j - 1])
dp[i - 1][j] = 1;
}
}
}
var ans = false;
for (var i = 0; i <= n; i++) {
// Condition if it is
// possible to make
// string A equal to
// string T
if (dp[0][i] == 1) {
ans = true;
break;
}
}
// Print final
// answer
if (ans == true)
document.write( "Yes" + "<br>");
else
document.write( "No" + "<br>");
}
// Driver Code
var S = "abab";
var T = "baab";
twoStringsEquality(S, T);
// This code is contributed by rutvik_56.
</script>
Time Complexity: O(N2)
Auxiliary Space: O(N2)
Efficient approach : Space optimization
In previous approach the current value dp[i][j] is only depend upon the current and previous row values of DP. So to optimize the space complexity we use a single 1D array to store the computations.
Implementation steps:
- Create a 1D vector dp of size large+1.
- Set a base case by initializing the values of DP .
- Now iterate over subproblems by the help of nested loop and get the current value from previous computations.
- Now Create a temporary 1d vector temp used to store the current values from previous computations.
- After every iteration assign the value of temp to dp for further iteration.
- Initialize a variable ans to store the final answer and update it by iterating through the Dp.
- At last return and print the final answer stored in ans .
Implementation:
C++
// C++ implementation of above
// approach
#include <bits/stdc++.h>
using namespace std;
// Function that prints whether
// is it possible to make a
// string equal to T by
// performing given operations
void twoStringsEquality(string s,
string t)
{
int n = s.length();
vector<int> dp(n + 1, 0);
// Base case, if we put the
// last character at front
// of A
if (s[n - 1] == t[0])
dp[1] = 1;
// Base case, if we put the
// last character at back
// of A
if (s[n - 1] == t[n - 1])
dp[0] = 1;
for (int i = n - 1; i > 0; i--) {
vector<int> temp(n + 1, 0);
for (int j = 0; j <= n - i; j++) {
// Condition if current
// sequence is matchable
if (dp[j]) {
// Condition for front
// move to (i - 1)th
// character
if (s[i - 1] == t[j])
temp[j + 1] = 1;
// Condition for back
// move to (i - 1)th
// character
if (s[i - 1] == t[i + j - 1])
temp[j] = 1;
}
}
dp = temp;
}
bool ans = false;
for (int i = 0; i <= n; i++) {
// Condition if it is
// possible to make
// string A equal to
// string T
if (dp[i] == 1) {
ans = true;
break;
}
}
// Print final
// answer
if (ans == true)
cout << "Yes"
<< "\n";
else
cout << "No"
<< "\n";
}
// Driver Code
int main()
{
string S = "abab";
string T = "baab";
twoStringsEquality(S, T);
return 0;
}
Java
import java.util.*;
class Main
{
// Function that prints whether
// is it possible to make a
// string equal to T by
// performing given operations
static void twoStringsEquality(String s, String t) {
int n = s.length();
List<Integer> dp = new ArrayList<>(Collections.nCopies(n + 1, 0));
// Base case, if we put the
// last character at front
// of A
if (s.charAt(n - 1) == t.charAt(0))
dp.set(1, 1);
// Base case, if we put the
// last character at back
// of A
if (s.charAt(n - 1) == t.charAt(n - 1))
dp.set(0, 1);
for (int i = n - 1; i > 0; i--) {
List<Integer> temp = new ArrayList<>(Collections.nCopies(n + 1, 0));
for (int j = 0; j <= n - i; j++) {
// Condition if current
// sequence is matchable
if (dp.get(j) == 1) {
// Condition for front
// move to (i - 1)th
// character
if (s.charAt(i - 1) == t.charAt(j))
temp.set(j + 1, 1);
// Condition for back
// move to (i - 1)th
// character
if (s.charAt(i - 1) == t.charAt(i + j - 1))
temp.set(j, 1);
}
}
dp = temp;
}
boolean ans = false;
for (int i = 0; i <= n; i++) {
// Condition if it is
// possible to make
// string A equal to
// string T
if (dp.get(i) == 1) {
ans = true;
break;
}
}
// Print final
// answer
if (ans == true)
System.out.println("Yes");
else
System.out.println("No");
}
// Driver Code
public static void main(String[] args) {
String S = "abab";
String T = "baab";
twoStringsEquality(S, T);
}
}
Python3
# Function that prints whether
# is it possible to make a
# string equal to T by
# performing given operations
def twoStringsEquality(s, t):
n = len(s)
dp = [0] * (n + 1)
# Base case, if we put the
# last character at front
# of A
if s[n - 1] == t[0]:
dp[1] = 1
# Base case, if we put the
# last character at back
# of A
if s[n - 1] == t[n - 1]:
dp[0] = 1
for i in range(n - 1, 0, -1):
temp = [0] * (n + 1)
for j in range(0, n - i + 1):
# Condition if current
# sequence is matchable
if dp[j]:
# Condition for front
# move to (i - 1)th
# character
if s[i - 1] == t[j]:
temp[j + 1] = 1
# Condition for back
# move to (i - 1)th
# character
if s[i - 1] == t[i + j - 1]:
temp[j] = 1
dp = temp
ans = False
for i in range(0, n + 1):
# Condition if it is
# possible to make
# string A equal to
# string T
if dp[i] == 1:
ans = True
break
# Print final
# answer
if ans:
print("Yes")
else:
print("No")
# Driver Code
if __name__ == "__main__":
S = "abab"
T = "baab"
twoStringsEquality(S, T)
C#
using System;
using System.Collections.Generic;
public class GFG {
// Function that prints whether
// is it possible to make a
// string equal to T by
// performing given operations
public static void TwoStringsEquality(string s, string t) {
int n = s.Length;
List<int> dp = new List<int>(new int[n + 1]);
// Base case, if we put the
// last character at front
// of A
if (s[n - 1] == t[0])
dp[1] = 1;
// Base case, if we put the
// last character at back
// of A
if (s[n - 1] == t[n - 1])
dp[0] = 1;
for (int i = n - 1; i > 0; i--) {
List<int> temp = new List<int>(new int[n + 1]);
for (int j = 0; j <= n - i; j++) {
// Condition if current
// sequence is matchable
if (dp[j] == 1) {
// Condition for front
// move to (i - 1)th
// character
if (s[i - 1] == t[j])
temp[j + 1] = 1;
// Condition for back
// move to (i - 1)th
// character
if (s[i - 1] == t[i + j - 1])
temp[j] = 1;
}
}
dp = temp;
}
bool ans = false;
for (int i = 0; i <= n; i++) {
// Condition if it is
// possible to make
// string A equal to
// string T
if (dp[i] == 1) {
ans = true;
break;
}
}
// Print final
// answer
if (ans == true)
Console.WriteLine("Yes");
else
Console.WriteLine("No");
}
// Driver Code
public static void Main() {
string S = "abab";
string T = "baab";
TwoStringsEquality(S, T);
}
}
JavaScript
// Function that prints whether
// it is possible to make a
// string equal to T by
// performing given operations
function twoStringsEquality(s, t) {
const n = s.length;
let dp = new Array(n + 1).fill(0);
// Base case, if we put the
// last character at front
// of A
if (s[n - 1] === t[0]) {
dp[1] = 1;
}
// Base case, if we put the
// last character at back
// of A
if (s[n - 1] === t[n - 1]) {
dp[0] = 1;
}
for (let i = n - 1; i > 0; i--) {
const temp = new Array(n + 1).fill(0);
for (let j = 0; j <= n - i; j++) {
// Condition if current
// sequence is matchable
if (dp[j]) {
// Condition for front
// move to (i - 1)th
// character
if (s[i - 1] === t[j]) {
temp[j + 1] = 1;
}
// Condition for back
// move to (i - 1)th
// character
if (s[i - 1] === t[i + j - 1]) {
temp[j] = 1;
}
}
}
dp = temp;
}
let ans = false;
for (let i = 0; i <= n; i++) {
// Condition if it is
// possible to make
// string A equal to
// string T
if (dp[i] === 1) {
ans = true;
break;
}
}
// Print final
// answer
if (ans) {
console.log("Yes");
} else {
console.log("No");
}
}
// Driver Code
const S = "abab";
const T = "baab";
twoStringsEquality(S, T);
// This code is contributed by Dwaipayan Bandyopadhyay
Output:
Yes
Time Complexity: O(N^2)
Auxiliary Space: O(N)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem