Check if it possible to partition in k subarrays with equal sum
Last Updated :
11 Jul, 2025
Given an array A of size N, and a number K. Task is to find out if it is possible to partition the array A into K contiguous subarrays such that the sum of elements within each of these subarrays is the same.
Prerequisite: Count the number of ways to divide an array into three contiguous parts having equal sum
Examples :
Input : arr[] = { 1, 4, 2, 3, 5 } K = 3
Output : Yes
Explanation :
Three possible partitions which have equal sum :
(1 + 4), (2 + 3) and (5)
Input : arr[] = { 1, 1, 2, 2 } K = 2
Output : No
Approach :
Can be solved by using Prefix Sums. Firstly, note that total sum of all elements in the array should be divisible by K to create K partitions each having equal sum. If it is divisible then, check each partition have an equal sum by doing :
- For a particular K, each subarray should have a required sum = total_sum / K.
- Starting from the 0th index, start comparing prefix sum, as soon as it is equal to the sum, it implies the end of one subarray (let's say at index j).
- From (j + 1)th index, find another suitable i whose sum (prefix_sum[i] - prefix_sum[j]) gets equal to the required sum. And the process goes until required number of contiguous subarrays i.e. K is found.
- If at any index, any subarray sum becomes greater than required sum, break out from loop since each subarray should contain that an equal sum.
Following is the implementation for above Approach
C++
// CPP Program to check if array
// can be split into K contiguous
// subarrays each having equal sum
#include <bits/stdc++.h>
using namespace std;
// function returns true to it is possible to
// create K contiguous partitions each having
// equal sum, otherwise false
bool KpartitionsPossible(int arr[], int n, int K)
{
// Creating and filling prefix sum array
int prefix_sum[n];
prefix_sum[0] = arr[0];
for (int i = 1; i < n; i++)
prefix_sum[i] = prefix_sum[i - 1] + arr[i];
// return false if total_sum is not
// divisible by K
int total_sum = prefix_sum[n-1];
if (total_sum % K != 0)
return false;
// a temporary variable to check
// there are exactly K partitions
int temp = 0;
int pos = -1;
for (int i = 0; i < n; i++)
{
// find suitable i for which first
// partition have the required sum
// and then find next partition and so on
if (prefix_sum[i] - (pos == -1 ? 0 :
prefix_sum[pos]) == total_sum / K)
{
pos = i;
temp++;
}
// if it becomes greater than
// required sum break out
else if (prefix_sum[i] - prefix_sum[pos] >
total_sum / K)
break;
}
// check if temp has reached to K
return (temp == K);
}
// Driver Code
int main()
{
int arr[] = { 4, 4, 3, 5, 6, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
int K = 3;
if (KpartitionsPossible(arr, n, K))
cout << "Yes";
else
cout << "No";
return 0;
}
Java
// Java Program to check if an array
// can be split into K contiguous
// subarrays each having equal sum
public class GfG{
// Function returns true to it is possible to
// create K contiguous partitions each having
// equal sum, otherwise false
static boolean KpartitionsPossible(int arr[], int n, int K)
{
// Creating and filling prefix sum array
int prefix_sum[] = new int[n];
prefix_sum[0] = arr[0];
for (int i = 1; i < n; i++)
prefix_sum[i] = prefix_sum[i - 1] + arr[i];
// return false if total_sum is not divisible by K
int total_sum = prefix_sum[n-1];
if (total_sum % K != 0)
return false;
// a temporary variable to check
// there are exactly K partitions
int temp = 0, pos = -1;
for (int i = 0; i < n; i++)
{
// find suitable i for which first
// partition have the required sum
// and then find next partition and so on
if (prefix_sum[i] - (pos == -1 ? 0 :
prefix_sum[pos]) == total_sum / K)
{
pos = i;
temp++;
}
// if it becomes greater than
// required sum break out
else if (prefix_sum[i] - (pos == -1 ? 0 :
prefix_sum[pos]) > total_sum / K)
break;
}
// check if temp has reached to K
return (temp == K);
}
public static void main(String []args){
int arr[] = { 4, 4, 3, 5, 6, 2 };
int n = arr.length;
int K = 3;
if (KpartitionsPossible(arr, n, K))
System.out.println("Yes");
else
System.out.println("No");
}
}
// This code is contributed by Rituraj Jain
Python3
# Python 3 Program to check if array
# can be split into K contiguous
# subarrays each having equal sum
# function returns true to it is possible to
# create K contiguous partitions each having
# equal sum, otherwise false
def KpartitionsPossible(arr, n, K):
# Creating and filling prefix sum array
prefix_sum = [0 for i in range(n)]
prefix_sum[0] = arr[0]
for i in range(1, n, 1):
prefix_sum[i] = prefix_sum[i - 1] + arr[i]
# return false if total_sum is not
# divisible by K
total_sum = prefix_sum[n - 1]
if (total_sum % K != 0):
return False
# a temporary variable to check
# there are exactly K partitions
temp = 0
pos = -1
for i in range(0, n, 1):
# find suitable i for which first
# partition have the required sum
# and then find next partition and so on
if (pos == -1):
sub = 0
else:
sub = prefix_sum[pos]
if (prefix_sum[i] - sub == total_sum / K) :
pos = i
temp += 1
# if it becomes greater than
# required sum break out
elif (prefix_sum[i] -
prefix_sum[pos] > total_sum / K):
break
# check if temp has reached to K
return (temp == K)
# Driver Code
if __name__ =='__main__':
arr = [4, 4, 3, 5, 6, 2]
n = len(arr)
K = 3
if (KpartitionsPossible(arr, n, K)):
print("Yes")
else:
print("No")
# This code is contributed by
# Shashank_Sharma
C#
// C# Program to check if an array
// can be split into K contiguous
// subarrays each having equal sum
using System;
class GfG
{
// Function returns true to it is possible to
// create K contiguous partitions each having
// equal sum, otherwise false
static bool KpartitionsPossible(int[] arr, int n, int K)
{
// Creating and filling prefix sum array
int[] prefix_sum = new int[n];
prefix_sum[0] = arr[0];
for (int i = 1; i < n; i++)
prefix_sum[i] = prefix_sum[i - 1] + arr[i];
// return false if total_sum is not divisible by K
int total_sum = prefix_sum[n-1];
if (total_sum % K != 0)
return false;
// a temporary variable to check
// there are exactly K partitions
int temp = 0, pos = -1;
for (int i = 0; i < n; i++)
{
// find suitable i for which first
// partition have the required sum
// and then find next partition and so on
if (prefix_sum[i] - (pos == -1 ? 0 :
prefix_sum[pos]) == total_sum / K)
{
pos = i;
temp++;
}
// if it becomes greater than
// required sum break out
else if (prefix_sum[i] - (pos == -1 ? 0 :
prefix_sum[pos]) > total_sum / K)
break;
}
// check if temp has reached to K
return (temp == K);
}
// Driver code
public static void Main()
{
int[] arr = { 4, 4, 3, 5, 6, 2 };
int n = arr.Length;
int K = 3;
if (KpartitionsPossible(arr, n, K))
Console.WriteLine("Yes");
else
Console.WriteLine("No");
}
}
// This code is contributed by ChitraNayal
PHP
<?php
// PHP Program to check if array
// can be split into K contiguous
// subarrays each having equal sum
// function returns true to
// it is possible to create
// K contiguous partitions
// each having equal sum,
// otherwise false
function KpartitionsPossible($arr,
$n, $K)
{
// Creating and filling
// prefix sum array
$prefix_sum = Array();
$prefix_sum[0] = $arr[0];
for ($i = 1; $i < $n; $i++)
$prefix_sum[$i] = $prefix_sum[$i - 1] +
$arr[$i];
// return false if total_sum
// is not divisible by K
$total_sum = $prefix_sum[$n - 1];
if ($total_sum % $K != 0)
return false;
// a temporary variable to
// check there are exactly
// K partitions
$temp = 0;
$pos = -1;
for ($i = 0; $i < $n; $i++)
{
// find suitable i for which
// first partition have the
// required sum and then find
// next partition and so on
if ($prefix_sum[$i] - ($pos == -1 ? 0 :
$prefix_sum[$pos]) ==
(int)$total_sum / $K)
{
$pos = $i;
$temp++;
}
}
// check if temp has
// reached to K
return ($temp == $K);
}
// Driver Code
$arr = array (4, 4, 3,
5, 6, 2);
$n = sizeof($arr) ;
$K = 3;
if (KpartitionsPossible($arr, $n, $K))
echo "Yes";
else
echo "No";
// This code is contributed by m_kit
?>
JavaScript
<script>
// Javascript Program to check if an array
// can be split into K contiguous
// subarrays each having equal sum
// Function returns true to it is possible to
// create K contiguous partitions each having
// equal sum, otherwise false
function KpartitionsPossible(arr, n, K)
{
// Creating and filling prefix sum array
let prefix_sum = new Array(n);
prefix_sum[0] = arr[0];
for (let i = 1; i < n; i++)
prefix_sum[i] = prefix_sum[i - 1] +
arr[i];
// return false if total_sum is
// not divisible by K
let total_sum = prefix_sum[n-1];
if (total_sum % K != 0)
return false;
// a temporary variable to check
// there are exactly K partitions
let temp = 0, pos = -1;
for (let i = 0; i < n; i++)
{
// find suitable i for which first
// partition have the required sum
// and then find next partition and so on
if (prefix_sum[i] - (pos == -1 ? 0 :
prefix_sum[pos]) ==
parseInt(total_sum / K, 10))
{
pos = i;
temp++;
}
// if it becomes greater than
// required sum break out
else if (prefix_sum[i] - (pos == -1 ? 0 :
prefix_sum[pos]) >
parseInt(total_sum / K, 10))
break;
}
// check if temp has reached to K
return (temp == K);
}
let arr = [ 4, 4, 3, 5, 6, 2 ];
let n = arr.length;
let K = 3;
if (KpartitionsPossible(arr, n, K))
document.write("Yes");
else
document.write("No");
</script>
Time Complexity: O(N), where N is the size of array.
Auxiliary Space: O(N), where N is the size of array.
We can further reduce the space complexity to O(1).
Since the array will be divided to k sub arrays and all the sub arrays will be continuous. So idea is to calculate the count of sub arrays whose sum is equal to sum of whole array divided by k.
if count == k print Yes else print No.
Steps to solve the problem:
- Initialize sum as 0 and count as 0.
- Calculate the sum of all elements in the array arr.
- Check if the sum is divisible by k or not. If not, return 0 as it is not possible to divide the array into k subarrays of equal sum.
- Update the sum as divide the sum by k.
- Initialize ksum as 0.
- Iterate through the array arr and add the current element to ksum.
- If ksum is equal to the target sum, it means that we have found a subarray, so we reset ksum to 0 and increment the count by 1.
- If the count is equal to k, it means that we have successfully divided the array into k subarrays of equal sum, so return 1. Otherwise, return 0.
Following is the implementation for above Approach
C++
// CPP Program to check if array
// can be split into K contiguous
// subarrays each having equal sum
#include <bits/stdc++.h>
using namespace std;
// function returns true to it is possible to
// create K contiguous partitions each having
// equal sum, otherwise false
int KpartitionsPossible(int arr[], int n, int k)
{
int sum = 0;
int count = 0;
// calculate the sum of the array
for(int i = 0; i < n; i++)
sum = sum + arr[i];
if(sum % k != 0)
return 0;
sum = sum / k;
int ksum = 0;
// ksum denotes the sum of each subarray
for(int i = 0; i < n; i++)
{
ksum=ksum + arr[i];
// one subarray is found
if(ksum == sum)
{
// to locate another
ksum = 0;
count++;
}
}
if(count == k)
return 1;
else
return 0;
}
// Driver code
int main() {
int arr[] = { 1, 1, 2, 2};
int k = 2;
int n = sizeof(arr) / sizeof(arr[0]);
if (KpartitionsPossible(arr, n, k) == 0)
cout << "Yes";
else
cout<<"No";
return 0;
}
Java
//Java Program to check if array
// can be split into K contiguous
// subarrays each having equal sum
public class GFG {
// function returns true to it is possible to
// create K contiguous partitions each having
// equal sum, otherwise false
static int KpartitionsPossible(int arr[], int n, int k) {
int sum = 0;
int count = 0;
// calculate the sum of the array
for (int i = 0; i < n; i++) {
sum = sum + arr[i];
}
if (sum % k != 0) {
return 0;
}
sum = sum / k;
int ksum = 0;
// ksum denotes the sum of each subarray
for (int i = 0; i < n; i++) {
ksum = ksum + arr[i];
// one subarray is found
if (ksum == sum) {
// to locate another
ksum = 0;
count++;
}
}
if (count == k) {
return 1;
} else {
return 0;
}
}
// Driver Code
public static void main(String[] args) {
int arr[] = {1, 1, 2, 2};
int k = 2;
int n = arr.length;
if (KpartitionsPossible(arr, n, k) == 0) {
System.out.println("Yes");
} else {
System.out.println("No");
}
}
}
/*This code is contributed by PrinciRaj1992*/
Python3
# Python3 Program to check if array
# can be split into K contiguous
# subarrays each having equal sum
# Function returns true to it is possible
# to create K contiguous partitions each
# having equal sum, otherwise false
def KpartitionsPossible(arr, n, k) :
sum = 0
count = 0
# calculate the sum of the array
for i in range(n) :
sum = sum + arr[i]
if(sum % k != 0) :
return 0
sum = sum // k
ksum = 0
# ksum denotes the sum of each subarray
for i in range(n) :
ksum = ksum + arr[i]
# one subarray is found
if(ksum == sum) :
# to locate another
ksum = 0
count += 1
if(count == k) :
return 1
else :
return 0
# Driver code
if __name__ == "__main__" :
arr = [ 1, 1, 2, 2]
k = 2
n = len(arr)
if (KpartitionsPossible(arr, n, k) == 0) :
print("Yes")
else :
print("No")
# This code is contributed by Ryuga
C#
// C# Program to check if array
// can be split into K contiguous
// subarrays each having equal sum
using System;
public class GFG{
// function returns true to it is possible to
// create K contiguous partitions each having
// equal sum, otherwise false
static int KpartitionsPossible(int []arr, int n, int k) {
int sum = 0;
int count = 0;
// calculate the sum of the array
for (int i = 0; i < n; i++) {
sum = sum + arr[i];
}
if (sum % k != 0) {
return 0;
}
sum = sum / k;
int ksum = 0;
// ksum denotes the sum of each subarray
for (int i = 0; i < n; i++) {
ksum = ksum + arr[i];
// one subarray is found
if (ksum == sum) {
// to locate another
ksum = 0;
count++;
}
}
if (count == k) {
return 1;
} else {
return 0;
}
}
// Driver Code
public static void Main() {
int []arr = {1, 1, 2, 2};
int k = 2;
int n = arr.Length;
if (KpartitionsPossible(arr, n, k) == 0) {
Console.Write("Yes");
} else {
Console.Write("No");
}
}
}
/*This code is contributed by PrinciRaj1992*/
PHP
<?php
// PHP Program to check if array
// can be split into K contiguous
// subarrays each having equal sum
// function returns true to it is possible to
// create K contiguous partitions each having
// equal sum, otherwise false
function KpartitionsPossible($arr, $n, $k)
{
$sum = 0;
$count = 0;
// calculate the sum of the array
for($i = 0; $i < $n; $i++)
$sum = $sum + $arr[$i];
if($sum % $k != 0)
return 0;
$sum = $sum / $k;
$ksum = 0;
// ksum denotes the sum of each subarray
for( $i = 0; $i < $n; $i++)
{
$ksum = $ksum + $arr[$i];
// one subarray is found
if($ksum == $sum)
{
// to locate another
$ksum = 0;
$count++;
}
}
if($count == $k)
return 1;
else
return 0;
}
// Driver code
$arr = array(1, 1, 2, 2);
$k = 2;
$n = count($arr);
if (KpartitionsPossible($arr, $n, $k) == 0)
echo "Yes";
else
echo "No";
// This code is contributed by
// Rajput-Ji
?>
JavaScript
<script>
// Javascript program to check if array
// can be split into K contiguous
// subarrays each having equal sum
// Function returns true to it is possible to
// create K contiguous partitions each having
// equal sum, otherwise false
function KpartitionsPossible(arr, n, k)
{
let sum = 0;
let count = 0;
// Calculate the sum of the array
for(let i = 0; i < n; i++)
sum = sum + arr[i];
if (sum % k != 0)
return 0;
sum = parseInt(sum / k, 10);
let ksum = 0;
// ksum denotes the sum of each subarray
for(let i = 0; i < n; i++)
{
ksum = ksum + arr[i];
// One subarray is found
if (ksum == sum)
{
// To locate another
ksum = 0;
count++;
}
}
if (count == k)
return 1;
else
return 0;
}
// Driver code
let arr = [ 1, 1, 2, 2 ];
let k = 2;
let n = arr.length;
if (KpartitionsPossible(arr, n, k) == 0)
document.write("Yes");
else
document.write("No");
// This code is contributed by mukesh07
</script>
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem