Check if decimal representation of Binary String is divisible by 9 or not
Last Updated :
26 Apr, 2023
Given a binary string S of length N, the task is to check if the decimal representation of the binary string is divisible by 9 or not.
Examples:
Input: S = 1010001
Output:Yes
Explanation: The decimal representation of the binary string S is 81, which is divisible by 9. Therefore, the required output is Yes.
Input: S = 1010011
Output: No
Explanation: The decimal representation of the binary string S is 83, which is not divisible by 9. Therefore, the required output is No.
Naive Approach: The simplest approach to solve this problem is to convert the binary number into a decimal number and check if the decimal number is divisible by 9 or not. If found to be true then print True. Otherwise, print False.
C++
#include<iostream>
#include<bitset>
using namespace std;
void is_binary_divisible_by_9(string s){
bitset<32> decimal_num(s);
if(decimal_num.to_ulong() % 9 == 0){
cout << "Yes\n";
} else {
cout << "No\n";
}
}
// Example Usage
int main() {
string s = "1010001";
is_binary_divisible_by_9(s);
return 0;
}
Java
public class BinaryDivisibleByNine {
// Function to check if binary string
// is divisible by 9 or not
public static String isBinaryDivisibleByNine(String s) {
// Convert the binary string to its decimal representation
int decimal_num = Integer.parseInt(s, 2);
// Check if the decimal representation is divisible by 9
if (decimal_num % 9 == 0) {
return "Yes";
} else {
return "No";
}
}
public static void main(String[] args) {
String s = "1010001";
System.out.println(isBinaryDivisibleByNine(s));
}
}
Python3
def is_binary_divisible_by_9(s):
decimal_num = int(s, 2)
if decimal_num % 9 == 0:
print("Yes")
else:
print("No")
# Example Usage
s = '1010001'
is_binary_divisible_by_9(s)
C#
using System;
public class BinaryDivisibleByNine {
// Function to check if binary string is divisible by 9
// or not
public static string IsBinaryDivisibleByNine(string s)
{
// Convert the binary string to its decimal
// representation
int decimal_num = Convert.ToInt32(s, 2);
// Check if the decimal representation is divisible
// by 9
if (decimal_num % 9 == 0) {
return "Yes";
}
else {
return "No";
}
}
public static void Main(string[] args)
{
string s = "1010001";
Console.WriteLine(IsBinaryDivisibleByNine(s));
}
}
JavaScript
function isBinaryDivisibleByNine(s) {
// Convert the binary string to its decimal representation
let decimal_num = parseInt(s, 2);
// Check if the decimal representation is divisible by 9
if (decimal_num % 9 === 0) {
return "Yes";
} else {
return "No";
}
}
let s = "1010001";
console.log(isBinaryDivisibleByNine(s));
Time Complexity: O(N)
Auxiliary Space: O(1)
Efficient Approach: If the length of a binary string is greater than 64 then the decimal representation of the binary string will cause an overflow. Therefore, to reduce the overflow issue the idea is to convert the binary string into the octal representation and check if the octal representation of the binary string is divisible by 9 or not. Follow the steps below to solve the problem:
- Convert the binary string into octal representation.
- Initialize a variable, say Oct_9 to store the octal representation of 9.
- Find the sum of digits, say evenSum present at even positions in the octal representation of the binary string.
- Find the sum of digits, say oddSum present at odd positions in the octal representation of the binary string.
- Check if abs(oddSum - EvenSum) % Oct_9 == 0 or not. If found to be true, then print Yes.
- Otherwise, print No.
Below is the implementation of the above approach:
C++
// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to convert the binary string
// into octal representation
string ConvertequivalentBase8(string S)
{
// Stores binary representation of
// the decimal value [0 - 7]
map<string, char> mp;
// Stores the decimal values
// of binary strings [0 - 7]
mp["000"] = '0';
mp["001"] = '1';
mp["010"] = '2';
mp["011"] = '3';
mp["100"] = '4';
mp["101"] = '5';
mp["110"] = '6';
mp["111"] = '7';
// Stores length of S
int N = S.length();
if (N % 3 == 2) {
// Update S
S = "0" + S;
}
else if (N % 3 == 1) {
// Update S
S = "00" + S;
}
// Update N
N = S.length();
// Stores octal representation
// of the binary string
string oct;
// Traverse the binary string
for (int i = 0; i < N; i += 3) {
// Stores 3 consecutive characters
// of the binary string
string temp = S.substr(i, 3);
// Append octal representation
// of temp
oct.push_back(mp[temp]);
}
return oct;
}
// Function to check if binary string
// is divisible by 9 or not
string binString_div_9(string S, int N)
{
// Stores octal representation
// of S
string oct;
oct = ConvertequivalentBase8(S);
// Stores sum of elements present
// at odd positions of oct
int oddSum = 0;
// Stores sum of elements present
// at odd positions of oct
int evenSum = 0;
// Stores length of oct
int M = oct.length();
// Traverse the string oct
for (int i = 0; i < M; i += 2) {
// Update oddSum
oddSum += int(oct[i] - '0');
}
// Traverse the string oct
for (int i = 1; i < M; i += 2) {
// Update evenSum
evenSum += int(oct[i] - '0');
}
// Stores cotal representation
// of 9
int Oct_9 = 11;
// If absolute value of (oddSum
// - evenSum) is divisible by Oct_9
if (abs(oddSum - evenSum) % Oct_9
== 0) {
return "Yes";
}
return "No";
}
// Driver Code
int main()
{
string S = "1010001";
int N = S.length();
cout << binString_div_9(S, N);
}
Java
// Java program to implement
// the above approach
import java.util.*;
import java.lang.*;
import java.io.*;
class GFG{
// Function to convert the binary string
// into octal representation
static String ConvertequivalentBase8(String S)
{
// Stores binary representation of
// the decimal value [0 - 7]
HashMap<String,
Character> mp = new HashMap<String,
Character>();
// Stores the decimal values
// of binary Strings [0 - 7]
mp.put("000", '0');
mp.put("001", '1');
mp.put("010", '2');
mp.put("011", '3');
mp.put("100", '4');
mp.put("101", '5');
mp.put("110", '6');
mp.put("111", '7');
// Stores length of S
int N = S.length();
if (N % 3 == 2)
{
// Update S
S = "0" + S;
}
else if (N % 3 == 1)
{
// Update S
S = "00" + S;
}
// Update N
N = S.length();
// Stores octal representation
// of the binary String
String oct = "";
// Traverse the binary String
for(int i = 0; i < N; i += 3)
{
// Stores 3 consecutive characters
// of the binary String
String temp = S.substring(i, i + 3);
// Append octal representation
// of temp
oct += mp.get(temp);
}
return oct;
}
// Function to check if binary String
// is divisible by 9 or not
static String binString_div_9(String S, int N)
{
// Stores octal representation
// of S
String oct = "";
oct = ConvertequivalentBase8(S);
// Stores sum of elements present
// at odd positions of oct
int oddSum = 0;
// Stores sum of elements present
// at odd positions of oct
int evenSum = 0;
// Stores length of oct
int M = oct.length();
// Traverse the String oct
for(int i = 0; i < M; i += 2)
// Update oddSum
oddSum += (oct.charAt(i) - '0');
// Traverse the String oct
for(int i = 1; i < M; i += 2)
{
// Update evenSum
evenSum += (oct.charAt(i) - '0');
}
// Stores octal representation
// of 9
int Oct_9 = 11;
// If absolute value of (oddSum
// - evenSum) is divisible by Oct_9
if (Math.abs(oddSum - evenSum) % Oct_9 == 0)
{
return "Yes";
}
return "No";
}
// Driver Code
public static void main(String[] args)
{
String S = "1010001";
int N = S.length();
System.out.println(binString_div_9(S, N));
}
}
// This code is contributed by grand_master
Python3
# Python3 program to implement
# the above approach
# Function to convert the binary
# string into octal representation
def ConvertequivalentBase8(S):
# Stores binary representation of
# the decimal value [0 - 7]
mp = {}
# Stores the decimal values
# of binary strings [0 - 7]
mp["000"] = '0'
mp["001"] = '1'
mp["010"] = '2'
mp["011"] = '3'
mp["100"] = '4'
mp["101"] = '5'
mp["110"] = '6'
mp["111"] = '7'
# Stores length of S
N = len(S)
if (N % 3 == 2):
# Update S
S = "0" + S
elif (N % 3 == 1):
# Update S
S = "00" + S
# Update N
N = len(S)
# Stores octal representation
# of the binary string
octal = ""
# Traverse the binary string
for i in range(0, N, 3):
# Stores 3 consecutive characters
# of the binary string
temp = S[i: i + 3]
# Append octal representation
# of temp
if temp in mp:
octal += (mp[temp])
return octal
# Function to check if binary string
# is divisible by 9 or not
def binString_div_9(S, N):
# Stores octal representation
# of S
octal = ConvertequivalentBase8(S)
# Stores sum of elements present
# at odd positions of oct
oddSum = 0
# Stores sum of elements present
# at odd positions of oct
evenSum = 0
# Stores length of oct
M = len(octal)
# Traverse the string oct
for i in range(0, M, 2):
# Update oddSum
oddSum += ord(octal[i]) - ord('0')
# Traverse the string oct
for i in range(1, M, 2):
# Update evenSum
evenSum += ord(octal[i]) - ord('0')
# Stores cotal representation
# of 9
Oct_9 = 11
# If absolute value of (oddSum
# - evenSum) is divisible by Oct_9
if (abs(oddSum - evenSum) % Oct_9 == 0):
return "Yes"
return "No"
# Driver Code
if __name__ == "__main__":
S = "1010001"
N = len(S)
print(binString_div_9(S, N))
# This code is contributed by chitranayal
C#
// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG{
// Function to convert the binary string
// into octal representation
static String ConvertequivalentBase8(String S)
{
// Stores binary representation of
// the decimal value [0 - 7]
Dictionary<String,
char> mp = new Dictionary<String,
char>();
// Stores the decimal values
// of binary Strings [0 - 7]
mp.Add("000", '0');
mp.Add("001", '1');
mp.Add("010", '2');
mp.Add("011", '3');
mp.Add("100", '4');
mp.Add("101", '5');
mp.Add("110", '6');
mp.Add("111", '7');
// Stores length of S
int N = S.Length;
if (N % 3 == 2)
{
// Update S
S = "0" + S;
}
else if (N % 3 == 1)
{
// Update S
S = "00" + S;
}
// Update N
N = S.Length;
// Stores octal representation
// of the binary String
String oct = "";
// Traverse the binary String
for(int i = 0; i < N; i += 3)
{
// Stores 3 consecutive characters
// of the binary String
String temp = S.Substring(0, N);
// Append octal representation
// of temp
if (mp.ContainsKey(temp))
oct += mp[temp];
}
return oct;
}
// Function to check if binary String
// is divisible by 9 or not
static String binString_div_9(String S, int N)
{
// Stores octal representation
// of S
String oct = "";
oct = ConvertequivalentBase8(S);
// Stores sum of elements present
// at odd positions of oct
int oddSum = 0;
// Stores sum of elements present
// at odd positions of oct
int evenSum = 0;
// Stores length of oct
int M = oct.Length;
// Traverse the String oct
for(int i = 0; i < M; i += 2)
// Update oddSum
oddSum += (oct[i] - '0');
// Traverse the String oct
for(int i = 1; i < M; i += 2)
{
// Update evenSum
evenSum += (oct[i] - '0');
}
// Stores octal representation
// of 9
int Oct_9 = 11;
// If absolute value of (oddSum
// - evenSum) is divisible by Oct_9
if (Math.Abs(oddSum - evenSum) % Oct_9 == 0)
{
return "Yes";
}
return "No";
}
// Driver Code
public static void Main(String[] args)
{
String S = "1010001";
int N = S.Length;
Console.WriteLine(binString_div_9(S, N));
}
}
// This code is contributed by shikhasingrajput
JavaScript
<script>
// Javascript program to implement
// the above approach
// Function to convert the binary string
// into octal representation
function ConvertequivalentBase8(S)
{
// Stores binary representation of
// the decimal value [0 - 7]
let mp = new Map();
// Stores the decimal values
// of binary Strings [0 - 7]
mp.set("000", '0');
mp.set("001", '1');
mp.set("010", '2');
mp.set("011", '3');
mp.set("100", '4');
mp.set("101", '5');
mp.set("110", '6');
mp.set("111", '7');
// Stores length of S
let N = S.length;
if (N % 3 == 2)
{
// Update S
S = "0" + S;
}
else if (N % 3 == 1)
{
// Update S
S = "00" + S;
}
// Update N
N = S.length;
// Stores octal representation
// of the binary String
let oct = "";
// Traverse the binary String
for(let i = 0; i < N; i += 3)
{
// Stores 3 consecutive characters
// of the binary String
let temp = S.substring(i, i + 3);
// Append octal representation
// of temp
oct += mp.get(temp);
}
return oct;
}
// Function to check if binary String
// is divisible by 9 or not
function binString_div_9(S, N)
{
// Stores octal representation
// of S
let oct = "";
oct = ConvertequivalentBase8(S);
// Stores sum of elements present
// at odd positions of oct
let oddSum = 0;
// Stores sum of elements present
// at odd positions of oct
let evenSum = 0;
// Stores length of oct
let M = oct.length;
// Traverse the String oct
for(let i = 0; i < M; i += 2)
// Update oddSum
oddSum += (oct[i] - '0');
// Traverse the String oct
for(let i = 1; i < M; i += 2)
{
// Update evenSum
evenSum += (oct[i] - '0');
}
// Stores octal representation
// of 9
let Oct_9 = 11;
// If absolute value of (oddSum
// - evenSum) is divisible by Oct_9
if (Math.abs(oddSum - evenSum) % Oct_9 == 0)
{
return "Yes";
}
return "No";
}
// Driver Code
let S = "1010001";
let N = S.length;
document.write(binString_div_9(S, N));
// This code is contributed by avanitrachhadiya2155
</script>
Time Complexity: O(N)
Auxiliary Space: O(N)
Similar Reads
Decimal representation of given binary string is divisible by 5 or not
The problem is to check whether the decimal representation of the given binary number is divisible by 5 or not. Take care, the number could be very large and may not fit even in long long int. The approach should be such that there are zero or minimum number of multiplication and division operations
12 min read
Decimal representation of given binary string is divisible by 10 or not
The problem is to check whether the decimal representation of the given binary number is divisible by 10 or not. Take care, the number could be very large and may not fit even in long long int. The approach should be such that there are zero or minimum number of multiplication and division operation
13 min read
Decimal representation of given binary string is divisible by 20 or not
The problem is to check whether the decimal representation of the given binary number is divisible by 20 or not. Take care, the number could be very large and may not fit even in long long int. The approach should be such that there are zero or the minimum numbers of multiplication and division oper
14 min read
Check if Decimal representation of an Octal number is divisible by 7
Given an Octal number N. The task is to write a program to check if the Decimal representation of the given octal number N is divisible by 7 or not. Examples: Input: N = 112 Output: NO Equivalent Decimal = 74 7410 = 7 * 10 1 + 4 * 100 1128 = 1 * 82 + 1 * 81 + 2 * 80 Input: N = 25 Output: YES Decimal
4 min read
Check if binary representations of 0 to N are present as substrings in given binary string
Give binary string str and an integer N, the task is to check if the substrings of the string contain all binary representations of non-negative integers less than or equal to the given integer N. Examples: Input: str = â0110", N = 3 Output: True Explanation: Since substrings â0", â1", â10", and â11
9 min read
Check if all prefixes of a number is divisible by remaining count of digits
Given a number N, the task is to check if for every value of i (0 <= i <= len), the first i digits of a number is divisible by (len - i + 1) or not, where len is the number of digits in N. If found to be true, then print "Yes". Otherwise, print "No". Examples: Input: N = 52248.Output: YesExpla
4 min read
Check if given number contains only â01â and â10â as substring in its binary representation
Given a number N, the task is to check if the binary representation of the number N has only "01" and "10" as a substring or not. If found to be true, then print "Yes". Otherwise, print "No".Examples: Input: N = 5 Output: Yes Explanation: (5)10 is (101)2 which contains only "01" and "10" as substrin
6 min read
Check divisibility of binary string by 2^k
Given a binary string and a number k, the task is to check whether the binary string is evenly divisible by 2k or not. Examples : Input : 11000 k = 2Output : YesExplanation :(11000)2 = (24)1024 is evenly divisible by 2k i.e. 4. Input : 10101 k = 3Output : NoExplanation : (10101)2 = (21)1021 is not e
10 min read
Check if binary representation of a number is palindrome
Given an integer x, determine whether its binary representation is a palindrome. Return true if it is a palindrome; otherwise, return false.Input: x = 9Output: trueExplanation: The binary representation of 9 is 1001, which is a palindrome.Input: x = 10Output: falseExplanation: The binary representat
9 min read
Check if a number is divisible by 8 using bitwise operators
Given a number n, check if it is divisible by 8 using bitwise operators. Examples: Input : 16 Output :YES Input :15 Output :NO Recommended PracticeCheck if a number is divisible by 8Try It! Approach: Result = (((n >> 3) << 3) == n). First we shift the 3 bit right then we shift the 3 bit
3 min read