Check if an array can be sorted by rearranging odd and even-indexed elements or not
Last Updated :
23 Jul, 2025
Given an array arr[] of size N, the task is to check if it is possible to sort the array using the following operations:
- Swap(arr[i], arr[j]), if i & 1 = 1 and j & 1 = 1.
- Swap(arr[i], arr[j]), if i & 1 = 0 and j & 1 = 0.
Examples:
Input: arr[] = {3, 5, 1, 2, 6}
Output: Yes
Explanation:
Swap(3, 1) --> {1, 5, 3, 2, 6}
Swap(5, 2) --> {1, 2, 3, 5, 6}
Input: arr[] = {3, 1, 5, 2, 6}
Output: No
Naive Approach: The idea is to find the minimum element for the even indexes or odd indexes and swap it from the current element if the index of the current element is even or odd respectively.
- Traverse the array arr[] and perform the following operations:
- If the current index is even, traverse the remaining even indices.
- Find the minimum element present in the even-indexed elements.
- Swap the minimum with the current array element.
- Repeat the above steps for all odd-indexed elements also.
- After completing the above operations, if the array is sorted, then it is possible to sort the array.
- Otherwise, it is not possible to sort the array.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
// Function to check if array
// can be sorted or not
bool isSorted(int arr[], int n)
{
for(int i = 0; i < n - 1; i++)
{
if (arr[i] > arr[i + 1])
return false;
}
return true;
}
// Function to check if given
// array can be sorted or not
bool sortPoss(int arr[], int n)
{
// Traverse the array
for(int i = 0; i < n; i++)
{
int idx = -1;
int minVar = arr[i];
// Traverse remaining elements
// at indices separated by 2
int j = i;
while (j < n)
{
// If current element
// is the minimum
if (arr[j] < minVar)
{
minVar = arr[j];
idx = j;
}
j = j + 2;
}
// If any smaller minimum exists
if (idx != -1)
{
// Swap with current element
swap(arr[i], arr[idx]);
}
}
// If array is sorted
if (isSorted(arr, n))
return true;
// Otherwise
else
return false;
}
// Driver Code
int main()
{
// Given array
int arr[] = { 3, 5, 1, 2, 6 };
int n = sizeof(arr) / sizeof(arr[0]);
if (sortPoss(arr, n))
cout << "True";
else
cout << "False";
return 0;
}
// This code is contributed by ukasp
Java
class GFG{
// Function to check if array
// can be sorted or not
public static boolean isSorted(int arr[], int n)
{
for(int i = 0; i < n - 1; i++)
{
if (arr[i] > arr[i + 1])
return false;
}
return true;
}
// Function to check if given
// array can be sorted or not
public static boolean sortPoss(int arr[], int n)
{
// Traverse the array
for(int i = 0; i < n; i++)
{
int idx = -1;
int minVar = arr[i];
// Traverse remaining elements
// at indices separated by 2
int j = i;
while (j < n)
{
// If current element
// is the minimum
if (arr[j] < minVar)
{
minVar = arr[j];
idx = j;
}
j = j + 2;
}
// If any smaller minimum exists
if (idx != -1)
{
// Swap with current element
int t;
t = arr[i];
arr[i] = arr[idx];
arr[idx] = t;
}
}
// If array is sorted
if (isSorted(arr, n))
return true;
// Otherwise
else
return false;
}
// Driver Code
public static void main(String args[])
{
// Given array
int arr[] = { 3, 5, 1, 2, 6 };
int n = arr.length;
if (sortPoss(arr, n))
System.out.println("True");
else
System.out.println("False");
}
}
// This code is contributed by SoumikMondal
Python3
# Function to check if array
# can be sorted or not
def isSorted(arr):
for i in range(len(arr)-1):
if arr[i]>arr[i + 1]:
return False
return True
# Function to check if given
# array can be sorted or not
def sortPoss(arr):
# Traverse the array
for i in range(len(arr)):
idx = -1
minVar = arr[i]
# Traverse remaining elements
# at indices separated by 2
for j in range(i, len(arr), 2):
# If current element
# is the minimum
if arr[j]<minVar:
minVar = arr[j]
idx = j
# If any smaller minimum exists
if idx != -1:
# Swap with current element
arr[i], arr[idx] = arr[idx], arr[i]
# If array is sorted
if isSorted(arr):
return True
# Otherwise
else:
return False
# Driver Code
# Given array
arr = [ 3, 5, 1, 2, 6 ]
print(sortPoss(arr))
C#
using System;
class GFG{
// Function to check if array
// can be sorted or not
public static bool isSorted(int[] arr, int n)
{
for(int i = 0; i < n - 1; i++)
{
if (arr[i] > arr[i + 1])
return false;
}
return true;
}
// Function to check if given
// array can be sorted or not
public static bool sortPoss(int[] arr, int n)
{
// Traverse the array
for(int i = 0; i < n; i++)
{
int idx = -1;
int minVar = arr[i];
// Traverse remaining elements
// at indices separated by 2
int j = i;
while (j < n)
{
// If current element
// is the minimum
if (arr[j] < minVar)
{
minVar = arr[j];
idx = j;
}
j = j + 2;
}
// If any smaller minimum exists
if (idx != -1)
{
// Swap with current element
int t;
t = arr[i];
arr[i] = arr[idx];
arr[idx] = t;
}
}
// If array is sorted
if (isSorted(arr, n))
return true;
// Otherwise
else
return false;
}
// Driver code
static public void Main()
{
// Given array
int[] arr = { 3, 5, 1, 2, 6 };
int n = arr.Length;
if (sortPoss(arr, n))
Console.WriteLine("True");
else
Console.WriteLine("False");
}
}
// This code is contributed by offbeat
JavaScript
<script>
// Function to check if array
// can be sorted or not
function isSorted(arr , n) {
for (i = 0; i < n - 1; i++) {
if (arr[i] > arr[i + 1])
return false;
}
return true;
}
// Function to check if given
// array can be sorted or not
function sortPoss(arr , n) {
// Traverse the array
for (i = 0; i < n; i++) {
var idx = -1;
var minVar = arr[i];
// Traverse remaining elements
// at indices separated by 2
var j = i;
while (j < n) {
// If current element
// is the minimum
if (arr[j] < minVar) {
minVar = arr[j];
idx = j;
}
j = j + 2;
}
// If any smaller minimum exists
if (idx != -1) {
// Swap with current element
var t;
t = arr[i];
arr[i] = arr[idx];
arr[idx] = t;
}
}
// If array is sorted
if (isSorted(arr, n))
return true;
// Otherwise
else
return false;
}
// Driver Code
// Given array
var arr = [ 3, 5, 1, 2, 6 ];
var n = arr.length;
if (sortPoss(arr, n))
document.write("True");
else
document.write("False");
// This code contributed by umadevi9616
</script>
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: The idea is to check if utilize the fact that we can arrange all the even indexed and odd indexed elements the way we want to use the swap operations.
- Initialize an array, say dupArr[], to store the contents of the given array.
- Sort the array dupArr[].
- Check if all even-indexed elements in the original array are the same as the even-indexed elements in dupArr[].
- If found to be true, then sorting is possible. Otherwise, sorting is not possible.
Below is the implementation of the above approach:
C++
// C++ implementation of the
// above approach
#include<bits/stdc++.h>
using namespace std;
// Function to check if array can
// be sorted by given operations
bool isEqual(vector<int>&A,vector<int>&B){
if(A.size() != B.size())return false;
for(int i = 0; i < A.size(); i++){
if(A[i] != B[i])return false;
}
return true;
}
bool sortPoss(vector<int>arr){
// Copy contents
// of the array
vector<int>dupArr(arr.begin(),arr.end());
// Sort the duplicate array
sort(dupArr.begin(),dupArr.end());
vector<int>evenOrg;
vector<int>evenSort;
// Traverse the array
for(int i=0;i<arr.size();i+=2){
// Append even-indexed elements
// of the original array
evenOrg.push_back(arr[i]);
// Append even-indexed elements
// of the duplicate array
evenSort.push_back(dupArr[i]);
}
// Sort the even-indexed elements
sort(evenOrg.begin(),evenOrg.end());
sort(evenSort.begin(),evenSort.end());
// Return true if even-indexed
// elements are identical
return isEqual(evenOrg,evenSort);
}
// Driver Code
int main(){
// Given array
vector<int>arr = {3, 5, 1, 2, 6};
cout << sortPoss(arr) << endl;
}
// This code is contributed by shinjanpatra.
Java
// Java implementation of the
// above approach
import java.io.*;
import java.util.*;
import java.util.ArrayList;
class GFG {
// Function to check if array can
// be sorted by given operations
public static boolean isEqual(ArrayList<Integer> A,ArrayList<Integer> B){
if(A.size() != B.size())return false;
for(int i = 0; i < A.size(); i++){
if(A.get(i) != B.get(i))return false;
}
return true;
}
public static boolean sortPoss(int[] arr){
// Copy contents
// of the array
ArrayList<Integer> dupArr = new ArrayList<Integer>();
for(int i = 0; i < arr.length; i++)
{
dupArr.add(arr[i]);
}
// Sort the duplicate array
Collections.sort(dupArr);
ArrayList<Integer> evenOrg = new ArrayList<Integer>();
ArrayList<Integer> evenSort = new ArrayList<Integer>();
// Traverse the array
for(int i = 0; i < arr.length; i += 2){
// Append even-indexed elements
// of the original array
evenOrg.add(arr[i]);
// Append even-indexed elements
// of the duplicate array
evenSort.add(dupArr.get(i));
}
// Sort the even-indexed elements
Collections.sort(evenOrg);
Collections.sort(evenSort);
// Return true if even-indexed
// elements are identical
return isEqual(evenOrg,evenSort);
}
// Driver Code
public static void main (String[] args)
{
// Given array
int[] arr = {3, 5, 1, 2, 6};
System.out.println(sortPoss(arr));
}
}
// This code is contributed by Aman Kumar.
Python3
# Python Program to implement
# the above approach
# Function to check if array can
# be sorted by given operations
def sortPoss(arr):
# Copy contents
# of the array
dupArr = list(arr)
# Sort the duplicate array
dupArr.sort()
evenOrg = []
evenSort = []
# Traverse the array
for i in range(0, len(arr), 2):
# Append even-indexed elements
# of the original array
evenOrg.append(arr[i])
# Append even-indexed elements
# of the duplicate array
evenSort.append(dupArr[i])
# Sort the even-indexed elements
evenOrg.sort()
evenSort.sort()
# Return true if even-indexed
# elements are identical
return evenOrg == evenSort
# Driver Code
# Given array
arr = [3, 5, 1, 2, 6]
print(sortPoss(arr))
C#
// C# code to implement the approach
using System;
using System.Linq;
using System.Collections.Generic;
class GFG {
// Function to check if array can
// be sorted by given operations
public static bool isEqual(List<int> A,List<int> B){
if(A.Count != B.Count) return false;
for(int i = 0; i < A.Count; i++){
if(A[i] != B[i]) return false;
}
return true;
}
public static bool sortPoss(int[] arr){
// Copy contents of the array
List<int> dupArr = arr.ToList();
// Sort the duplicate array
dupArr.Sort();
List<int> evenOrg = new List<int>();
List<int> evenSort = new List<int>();
// Traverse the array
for(int i = 0; i < arr.Length; i += 2){
// Append even-indexed elements
// of the original array
evenOrg.Add(arr[i]);
// Append even-indexed elements
// of the duplicate array
evenSort.Add(dupArr[i]);
}
// Sort the even-indexed elements
evenOrg.Sort();
evenSort.Sort();
// Return true if even-indexed
// elements are identical
return isEqual(evenOrg,evenSort);
}
// Driver Code
public static void Main(string[] args)
{
// Given array
int[] arr = {3, 5, 1, 2, 6};
Console.WriteLine(sortPoss(arr));
}
}
// This code is contributed by phasing17
JavaScript
<script>
// JavaScript Program to implement
// the above approach
// Function to check if array can
// be sorted by given operations
function isEqual(A,B){
if(A.length != B.length)return false;
for(let i = 0; i < A.length; i++){
if(A[i] != B[i])return false;
}
return true;
}
function sortPoss(arr){
// Copy contents
// of the array
let dupArr = arr.slice();
// Sort the duplicate array
dupArr.sort()
let evenOrg = []
let evenSort = []
// Traverse the array
for(let i=0;i<arr.length;i+=2){
// Append even-indexed elements
// of the original array
evenOrg.push(arr[i])
// Append even-indexed elements
// of the duplicate array
evenSort.push(dupArr[i])
}
// Sort the even-indexed elements
evenOrg.sort()
evenSort.sort()
// Return true if even-indexed
// elements are identical
return isEqual(evenOrg,evenSort);
}
// Driver Code
// Given array
let arr = [3, 5, 1, 2, 6]
document.write(sortPoss(arr),"</br>")
// This code is contributed by shinjanpatra.
</script>
Time Complexity: O(N*log(N))
Auxiliary Space: O(N)
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem