Check if all subarrays contains at least one unique element
Last Updated :
15 Jul, 2025
Given an array arr[] consisting of N integers, the task is to check if all subarrays of the array have at least one unique element in it or not. If found to be true, then print "Yes". Otherwise, print "No".
Examples:
Input: arr[] = {1, 2, 1}
Output: Yes
Explanation:
For Subarrays of size 1: {1}, {2}, {1}, the condition will always be true.
For Subarrays of size 2: {1, 2}, {2, 1}, each subarray has at least one unique element.
For Subarrays of size 3 = {1, 2, 1}, in this subarray we have 2 as the only unique element.
Since each subarray has at least one unique element, print "Yes".
Input: arr[] = {1, 2, 3, 1, 2, 3}
Output: No
Explanation:
Subarrays of size 6: {1, 2, 3, 1, 2, 3} contains no unique element. Therefore, print "No".
Naive Approach: The simplest approach is to generate all subarrays and use HashMap for each subarray to store the frequency of each element of that subarray. If any subarray does not have at least one unique element, then print "No". Otherwise, print "Yes".
Below is the implementation of the above approach:
C++
// C++ program for above approach
#include<bits/stdc++.h>
using namespace std;
// Function to check if all subarrays
// of array have at least one unique element
string check(int arr[], int n)
{
// Stores frequency of subarray
// elements
map<int, int> hm;
// Generate all subarrays
for(int i = 0; i < n; i++)
{
// Insert first element in map
hm[arr[i]] = 1;
for(int j = i + 1; j < n; j++)
{
// Update frequency of current
// subarray in the HashMap
hm[arr[j]]++;
bool flag = false;
// Check if at least one element
// occurs once in current subarray
for(auto x : hm)
{
if (x.second == 1)
{
flag = true;
break;
}
}
// If any subarray doesn't
// have unique element
if (!flag)
return "No";
}
// Clear map for next subarray
hm.clear();
}
// Return Yes if all subarray
// having at least 1 unique element
return "Yes";
}
// Driver Code
int main()
{
// Given array arr[]
int arr[] = { 1, 2, 1 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function Call
cout << check(arr, N);
}
// This code is contributed by bgangwar59
Java
// Java program for above approach
import java.util.*;
import java.lang.*;
class GFG {
// Function to check if all subarrays
// of array have at least one unique element
static String check(int arr[], int n)
{
// Stores frequency of subarray
// elements
Map<Integer, Integer> hm
= new HashMap<>();
// Generate all subarrays
for (int i = 0; i < n; i++) {
// Insert first element in map
hm.put(arr[i], 1);
for (int j = i + 1; j < n; j++) {
// Update frequency of current
// subarray in the HashMap
hm.put(
arr[j],
hm.getOrDefault(arr[j], 0) + 1);
boolean flag = false;
// Check if at least one element
// occurs once in current subarray
for (Integer k : hm.values()) {
if (k == 1) {
flag = true;
break;
}
}
// If any subarray doesn't
// have unique element
if (!flag)
return "No";
}
// Clear map for next subarray
hm.clear();
}
// Return Yes if all subarray
// having at least 1 unique element
return "Yes";
}
// Driver Code
public static void main(String[] args)
{
// Given array arr[]
int[] arr = { 1, 2, 1 };
int N = arr.length;
// Function Call
System.out.println(check(arr, N));
}
}
Python3
# Python3 program for
# the above approach
from collections import defaultdict
# Function to check if
# all subarrays of array
# have at least one unique
# element
def check(arr, n):
# Stores frequency of
# subarray elements
hm = defaultdict (int)
# Generate all subarrays
for i in range(n):
# Insert first element
# in map
hm[arr[i]] += 1
for j in range(i + 1, n):
# Update frequency of
# current subarray in
# the HashMap
hm[arr[j]] += 1
flag = False
# Check if at least one
# element occurs once in
# current subarray
for k in hm.values():
if (k == 1):
flag = True
break
# If any subarray doesn't
# have unique element
if (not flag):
return "No"
# Clear map for next
# subarray
hm.clear()
# Return Yes if all
# subarray having at
# least 1 unique element
return "Yes"
# Driver Code
if __name__ == "__main__":
# Given array arr[]
arr = [1, 2, 1]
N = len(arr)
# Function Call
print(check(arr, N))
# This code is contributed by Chitranayal
C#
// C# program for the
// above approach
using System;
using System.Collections.Generic;
class GFG{
// Function to check if all
// subarrays of array have at
// least one unique element
static String check(int []arr,
int n)
{
// Stores frequency of
// subarray elements
Dictionary<int,
int> hm =
new Dictionary<int,
int>();
// Generate all subarrays
for (int i = 0; i < n; i++)
{
// Insert first element
// in map
hm.Add(arr[i], 1);
for (int j = i + 1; j < n; j++)
{
// Update frequency of current
// subarray in the Dictionary
if(hm.ContainsKey(arr[j]))
hm[arr[j]]++;
else
hm.Add(arr[j], 1);
bool flag = false;
// Check if at least one
// element occurs once
// in current subarray
foreach (int k in hm.Values)
{
if (k == 1)
{
flag = true;
break;
}
}
// If any subarray doesn't
// have unique element
if (!flag)
return "No";
}
// Clear map for next
// subarray
hm.Clear();
}
// Return Yes if all subarray
// having at least 1 unique
// element
return "Yes";
}
// Driver Code
public static void Main(String[] args)
{
// Given array []arr
int[] arr = {1, 2, 1};
int N = arr.Length;
// Function Call
Console.WriteLine(check(arr, N));
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// Javascript program for above approach
// Function to check if all subarrays
// of array have at least one unique element
function check(arr, n)
{
// Stores frequency of subarray
// elements
var hm = new Map();
// Generate all subarrays
for(var i = 0; i < n; i++)
{
// Insert first element in map
hm.set(arr[i], 1);
for(var j = i + 1; j < n; j++)
{
// Update frequency of current
// subarray in the HashMap
if(hm.has(arr[j]))
hm.set(arr[j], hm.get(arr[j])+1);
else
hm.set(arr[j], 1)
var flag = false;
// Check if at least one element
// occurs once in current subarray
hm.forEach((value, key) => {
if (value == 1)
{
flag = true;
}
});
// If any subarray doesn't
// have unique element
if (!flag)
return "No";
}
// Clear map for next subarray
hm = new Map();
}
// Return Yes if all subarray
// having at least 1 unique element
return "Yes";
}
// Driver Code
// Given array arr[]
var arr = [1, 2, 1];
var N = arr.length;
// Function Call
document.write( check(arr, N));
</script>
Time Complexity: O(N3)
Auxiliary Space: O(N)
Efficient Approach: Follow the steps below to optimize the above approach:
- Iterate a loop over the range [0, N - 1] and create a map to store the frequency of each character present in the current subarray.
- Create a variable count to check that subarray has at least one element with frequency 1 or not.
- Traverse the array arr[] and update the frequency of each element in the map and update the count as:
- If the frequency of element is 1 then increment the count.
- If the frequency of element is 2 then decrement the count.
- In the above steps, if the value of count is 0, then print "No" as there exists a subarray who doesn't have any unique element in it.
- After all the iteration if the value of count is always positive, then print "Yes".
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
// Function to check if all subarrays
// have at least one unique element
string check(int arr[], int n)
{
// Generate all subarray
for(int i = 0; i < n; i++)
{
// Store frequency of
// subarray's elements
map<int, int> hm;
int count = 0;
// Traverse the array over
// the range [i, N]
for(int j = i; j < n; j++)
{
// Update frequency of
// current subarray in map
hm[arr[j]]++;
// Increment count
if (hm[arr[j]] == 1)
count++;
// Decrement count
if (hm[arr[j]] == 2)
count--;
if (count == 0)
return "No";
}
}
// If all subarrays have at
// least 1 unique element
return "Yes";
}
// Driver Code
int main()
{
// Given array arr[]
int arr[] = { 1, 2, 1 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function Call
cout << check(arr, N);
}
// This code is contributed by SURENDRA_GANGWAR
Java
// Java program for the above approach
import java.util.*;
import java.lang.*;
class GFG {
// Function to check if all subarrays
// have at least one unique element
static String check(int arr[], int n)
{
// Generate all subarray
for (int i = 0; i < n; i++) {
// Store frequency of
// subarray's elements
Map<Integer, Integer> hm
= new HashMap<>();
int count = 0;
// Traverse the array over
// the range [i, N]
for (int j = i; j < n; j++) {
// Update frequency of
// current subarray in map
hm.put(arr[j],
hm.getOrDefault(arr[j], 0) + 1);
// Increment count
if (hm.get(arr[j]) == 1)
count++;
// Decrement count
if (hm.get(arr[j]) == 2)
count--;
if (count == 0)
return "No";
}
}
// If all subarrays have at
// least 1 unique element
return "Yes";
}
// Driver Code
public static void main(String[] args)
{
// Given array arr[]
int[] arr = { 1, 2, 1 };
int N = arr.length;
// Function Call
System.out.println(check(arr, N));
}
}
Python3
# Python3 program for the above approach
# Function to check if all subarrays
# have at least one unique element
def check(arr, n):
# Generate all subarray
for i in range(n):
# Store frequency of
# subarray's elements
hm = {}
count = 0
# Traverse the array over
# the range [i, N]
for j in range(i, n):
# Update frequency of
# current subarray in map
hm[arr[j]] = hm.get(arr[j], 0) + 1
# Increment count
if (hm[arr[j]] == 1):
count += 1
# Decrement count
if (hm[arr[j]] == 2):
count -= 1
if (count == 0):
return "No"
# If all subarrays have at
# least 1 unique element
return "Yes"
# Driver Code
if __name__ == '__main__':
# Given array arr[]
arr = [ 1, 2, 1 ]
N = len(arr)
# Function Call
print(check(arr, N))
# This code is contributed by mohit kumar 29
C#
// C# program for the
// above approach
using System;
using System.Collections.Generic;
class GFG {
// Function to check if all
// subarrays have at least
// one unique element
static String check(int []arr,
int n)
{
// Generate all subarray
for (int i = 0; i < n; i++)
{
// Store frequency of
// subarray's elements
Dictionary<int,
int> hm =
new Dictionary<int,
int>();
int count = 0;
// Traverse the array over
// the range [i, N]
for (int j = i; j < n; j++)
{
// Update frequency of
// current subarray in map
if(hm.ContainsKey((arr[j])))
hm[arr[j]]++;
else
hm.Add(arr[j], 1);
// Increment count
if (hm[arr[j]] == 1)
count++;
// Decrement count
if (hm[arr[j]] == 2)
count--;
if (count == 0)
return "No";
}
}
// If all subarrays have at
// least 1 unique element
return "Yes";
}
// Driver Code
public static void Main(String[] args)
{
// Given array []arr
int[] arr = {1, 2, 1};
int N = arr.Length;
// Function Call
Console.WriteLine(check(arr, N));
}
}
// This code is contributed by gauravrajput1
JavaScript
<script>
//Javascript program for the above approach
// Function to check if all subarrays
// have at least one unique element
function check(arr, n)
{
// Generate all subarray
for(var i = 0; i < n; i++)
{
// Store frequency of
// subarray's elements
//map<int, int> hm;
var hm= new Map();
var count = 0;
// Traverse the array over
// the range [i, N]
for(var j = i; j < n; j++)
{
// Update frequency of
// current subarray in map
//hm[arr[j]]++;
if(hm.has(arr[j]))
hm.set(arr[j], hm.get(arr[j])+1)
else
hm.set(arr[j], 1)
// Increment count
if (hm.get(arr[j])==1)
count++;
// Decrement count
if (hm.get(arr[j]) == 2)
count--;
if (count == 0)
return "No";
}
}
// If all subarrays have at
// least 1 unique element
return "Yes";
}
var arr = [ 1, 2, 1 ];
var N = arr.length;
// Function Call
document.write(check(arr, N));
// This code is contributed by SoumikMondal
</script>
Time Complexity: O(N2)
Auxiliary Space: O(N)
Related Topic: Subarrays, Subsequences, and Subsets in Array
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem