C Program For Deleting A Node In A Linked List Last Updated : 17 Aug, 2023 Comments Improve Suggest changes Like Article Like Report We have discussed Linked List Introduction and Linked List Insertion in previous posts on a singly linked list.Let us formulate the problem statement to understand the deletion process. Given a 'key', delete the first occurrence of this key in the linked list. Iterative Method:To delete a node from the linked list, we need to do the following steps. 1) Find the previous node of the node to be deleted. 2) Change the next of the previous node. 3) Free memory for the node to be deleted. Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Since every node of the linked list is dynamically allocated using malloc() in C, we need to call free() for freeing memory allocated for the node to be deleted. C // A complete working C program // to demonstrate deletion in // singly linked list #include <stdio.h> #include <stdlib.h> // A linked list node struct Node { int data; struct Node* next; }; /* Given a reference (pointer to pointer) to the head of a list and an int, inserts a new node on the front of the list. */ void push(struct Node** head_ref, int new_data) { struct Node* new_node = (struct Node*)malloc(sizeof(struct Node)); new_node->data = new_data; new_node->next = (*head_ref); (*head_ref) = new_node; } /* Given a reference (pointer to pointer) to the head of a list and a key, deletes the first occurrence of key in linked list */ void deleteNode(struct Node** head_ref, int key) { // Store head node struct Node *temp = *head_ref, *prev; // If head node itself holds the key to be deleted if (temp != NULL && temp->data == key) { *head_ref = temp->next; // Changed head free(temp); // free old head return; } // Search for the key to be deleted, keep track of the // previous node as we need to change 'prev->next' while (temp != NULL && temp->data != key) { prev = temp; temp = temp->next; } // If key was not present in linked list if (temp == NULL) return; // Unlink the node from linked list prev->next = temp->next; free(temp); // Free memory } // This function prints contents of linked list starting // from the given node void printList(struct Node* node) { while (node != NULL) { printf(" %d ", node->data); node = node->next; } } // Driver code int main() { /* Start with the empty list */ struct Node* head = NULL; push(&head, 7); push(&head, 1); push(&head, 3); push(&head, 2); puts("Created Linked List: "); printList(head); deleteNode(&head, 1); puts(" Linked List after Deletion of 1: "); printList(head); return 0; } Output: Created Linked List: 2 3 1 7 Linked List after Deletion of 1: 2 3 7 Time Complexity: O(n), where n represents the length of the given linked list.Auxiliary Space: O(1), no extra space is required, so it is a constant. Please refer complete article on Linked List | Set 3 (Deleting a node) for more details! Comment More infoAdvertise with us Next Article C Program For Deleting A Node In A Linked List kartik Follow Improve Article Tags : Linked List C Programs C Language DSA Linked Lists C-programming +2 More Practice Tags : Linked List Similar Reads C Program For Deleting A Node In A Doubly Linked List Pre-requisite: Doubly Link List Set 1| Introduction and Insertion Write a function to delete a given node in a doubly-linked list. Original Doubly Linked List Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Approach: The deletion of a node in a doubly-linked list 4 min read C# Program For Deleting A Node In A Doubly Linked List Pre-requisite: Doubly Link List Set 1| Introduction and Insertion Write a function to delete a given node in a doubly-linked list. Original Doubly Linked List Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Approach: The deletion of a node in a doubly-linked list 4 min read C Program For Deleting A Linked List Node At A Given Position Given a singly linked list and a position, delete a linked list node at the given position. Example: Input: position = 1, Linked List = 8->2->3->1->7 Output: Linked List = 8->3->1->7 Input: position = 0, Linked List = 8->2->3->1->7 Output: Linked List = 2->3->1 3 min read C Program For Writing A Function To Delete A Linked List Algorithm For C:Iterate through the linked list and delete all the nodes one by one. The main point here is not to access the next of the current pointer if the current pointer is deleted. Implementation: C // C program to delete a linked list #include<stdio.h> #include<stdlib.h> #includ 2 min read C Program For Deleting A Given Node In Linked List Under Given Constraints Given a Singly Linked List, write a function to delete a given node. Your function must follow the following constraints: It must accept a pointer to the start node as the first parameter and node to be deleted as the second parameter i.e., a pointer to the head node is not global.It should not retu 3 min read C Program To Delete Alternate Nodes Of A Linked List Given a Singly Linked List, starting from the second node delete all alternate nodes of it. For example, if the given linked list is 1->2->3->4->5 then your function should convert it to 1->3->5, and if the given linked list is 1->2->3->4 then convert it to 1->3. Recomm 3 min read C Program For Deleting Last Occurrence Of An Item From Linked List Using pointers, loop through the whole list and keep track of the node prior to the node containing the last occurrence key using a special pointer. After this just store the next of next of the special pointer, into to next of special pointer to remove the required node from the linked list. C #inc 4 min read Program for all operations on Circular Linked List in C In a Circular linked list, every element has a link to its next element in the sequence, and the last element has a link to the first element. A circular linked list is similar to the singly linked list except that the last node points to the first node. Below is the image to illustrate the same: 1. 11 min read Menu driven program for all operations on doubly linked list in C A Linked List is a linear data structure that consists of two parts: one is the data part and the other is the address part. A Doubly Linked List in contains three parts: one is the data part and the other two are the address of the next and previous node in the list. In this article, all the common 5 min read C Program For Making Middle Node Head In A Linked List Given a singly linked list, find middle of the linked list and set middle node of the linked list at beginning of the linked list. Examples: Input: 1 2 3 4 5 Output: 3 1 2 4 5 Input: 1 2 3 4 5 6 Output: 4 1 2 3 5 6 The idea is to first find middle of a linked list using two pointers, first one moves 3 min read Like