Bucket Sort To Sort an Array with Negative Numbers
Last Updated :
31 Jan, 2023
We have discussed bucket sort in the main post on Bucket Sort .
Bucket sort is mainly useful when input is uniformly distributed over a range. For example, consider the problem of sorting a large set of floating point numbers which are in range from 0.0 to 1.0 and are uniformly distributed across the range. In the above post, we have discussed Bucket Sort to sort numbers which are greater than zero.
How to modify Bucket Sort to sort both positive and negative numbers?
Example:
Input : arr[] = { -0.897, 0.565, 0.656, -0.1234, 0, 0.3434 }
Output : -0.897 -0.1234 0 0.3434 0.565 0.656
Here we considering number is in range -1.0 to 1.0 (floating point number)
Algorithm :
sortMixed(arr[], n)
1) Split array into two parts
create two Empty vector Neg[], Pos[]
(for negative and positive element respectively)
Store all negative element in Neg[] by converting
into positive (Neg[i] = -1 * Arr[i] )
Store all +ve in pos[] (pos[i] = Arr[i])
2) Call function bucketSortPositive(Pos, pos.size())
Call function bucketSortPositive(Neg, Neg.size())
bucketSortPositive(arr[], n)
3) Create n empty buckets (Or lists).
4) Do following for every array element arr[i].
a) Insert arr[i] into bucket[n*array[i]]
5) Sort individual buckets using insertion sort.
6) Concatenate all sorted buckets.
Below is implementation of above idea (for floating point number )
CPP
// C++ program to sort an array of positive
// and negative numbers using bucket sort
#include <bits/stdc++.h>
using namespace std;
// Function to sort arr[] of size n using
// bucket sort
void bucketSort(vector<float> &arr, int n)
{
// 1) Create n empty buckets
vector<float> b[n];
// 2) Put array elements in different
// buckets
for (int i=0; i<n; i++)
{
int bi = n*arr[i]; // Index in bucket
b[bi].push_back(arr[i]);
}
// 3) Sort individual buckets
for (int i=0; i<n; i++)
sort(b[i].begin(), b[i].end());
// 4) Concatenate all buckets into arr[]
int index = 0;
arr.clear();
for (int i = 0; i < n; i++)
for (int j = 0; j < b[i].size(); j++)
arr.push_back(b[i][j]);
}
// This function mainly splits array into two
// and then calls bucketSort() for two arrays.
void sortMixed(float arr[], int n)
{
vector<float>Neg ;
vector<float>Pos;
// traverse array elements
for (int i=0; i<n; i++)
{
if (arr[i] < 0)
// store -Ve elements by
// converting into +ve element
Neg.push_back (-1 * arr[i]) ;
else
// store +ve elements
Pos.push_back (arr[i]) ;
}
bucketSort(Neg, (int)Neg.size());
bucketSort(Pos, (int)Pos.size());
// First store elements of Neg[] array
// by converting into -ve
for (int i=0; i < Neg.size(); i++)
arr[i] = -1 * Neg[ Neg.size() -1 - i];
// store +ve element
for(int j=Neg.size(); j < n; j++)
arr[j] = Pos[j - Neg.size()];
}
/* Driver program to test above function */
int main()
{
float arr[] = {-0.897, 0.565, 0.656,
-0.1234, 0, 0.3434};
int n = sizeof(arr)/sizeof(arr[0]);
sortMixed(arr, n);
cout << "Sorted array is \n";
for (int i=0; i<n; i++)
cout << arr[i] << " ";
return 0;
}
Java
// Java program to sort an array of positive
// and negative numbers using bucket sort
import java.util.*;
class GFG
{
// Function to sort arr[] of size n using
// bucket sort
static void bucketSort(Vector<Double> arr, int n)
{
// 1) Create n empty buckets
@SuppressWarnings("unchecked")
Vector<Double> b[] = new Vector[n];
for (int i = 0; i < b.length; i++)
b[i] = new Vector<Double>();
// 2) Put array elements in different
// buckets
for (int i = 0; i < n; i++)
{
int bi = (int)(n*arr.get(i)); // Index in bucket
b[bi].add(arr.get(i));
}
// 3) Sort individual buckets
for (int i = 0; i < n; i++)
Collections.sort(b[i]);
// 4) Concatenate all buckets into arr[]
int index = 0;
arr.clear();
for (int i = 0; i < n; i++)
for (int j = 0; j < b[i].size(); j++)
arr.add(b[i].get(j));
}
// This function mainly splits array into two
// and then calls bucketSort() for two arrays.
static void sortMixed(double arr[], int n)
{
Vector<Double>Neg = new Vector<>();
Vector<Double>Pos = new Vector<>();
// traverse array elements
for (int i = 0; i < n; i++)
{
if (arr[i] < 0)
// store -Ve elements by
// converting into +ve element
Neg.add (-1 * arr[i]) ;
else
// store +ve elements
Pos.add (arr[i]) ;
}
bucketSort(Neg, (int)Neg.size());
bucketSort(Pos, (int)Pos.size());
// First store elements of Neg[] array
// by converting into -ve
for (int i = 0; i < Neg.size(); i++)
arr[i] = -1 * Neg.get( Neg.size() -1 - i);
// store +ve element
for(int j = Neg.size(); j < n; j++)
arr[j] = Pos.get(j - Neg.size());
}
/* Driver program to test above function */
public static void main(String[] args)
{
double arr[] = {-0.897, 0.565, 0.656,
-0.1234, 0, 0.3434};
int n = arr.length;
sortMixed(arr, n);
System.out.print("Sorted array is \n");
for (int i = 0; i < n; i++)
System.out.print(arr[i] + " ");
}
}
// This code is contributed by Rajput-Ji
Python3
# Python3 program to sort an array of positive
# and negative numbers using bucket sort
# Function to sort arr[] of size n using
# bucket sort
def bucketSort(arr, n):
# 1) Create n empty buckets
b = []
for i in range(n):
b.append([])
# 2) Put array elements in different
# buckets
for i in range(n):
bi = int(n*arr[i])
b[bi].append(arr[i])
# 3) Sort individual buckets
for i in range(n):
b[i].sort()
# 4) Concatenate all buckets into arr[]
index = 0
arr.clear()
for i in range(n):
for j in range(len(b[i])):
arr.append(b[i][j])
# This function mainly splits array into two
# and then calls bucketSort() for two arrays.
def sortMixed(arr, n):
Neg = []
Pos = []
# traverse array elements
for i in range(n):
if(arr[i]<0):
# store -Ve elements by
# converting into +ve element
Neg.append(-1*arr[i])
else:
# store +ve elements
Pos.append(arr[i])
bucketSort(Neg,len(Neg))
bucketSort(Pos,len(Pos))
# First store elements of Neg[] array
# by converting into -ve
for i in range(len(Neg)):
arr[i]=-1*Neg[len(Neg)-1-i]
# store +ve element
for i in range(len(Neg),n):
arr[i]= Pos[i-len(Neg)]
# Driver program to test above function
arr = [-0.897, 0.565, 0.656, -0.1234, 0, 0.3434]
sortMixed(arr, len(arr))
print("Sorted Array is")
print(arr)
# This code is contributed by Pushpesh raj
C#
// C# program to sort an array of positive
// and negative numbers using bucket sort
using System;
using System.Collections.Generic;
public class GFG
{
// Function to sort []arr of size n using
// bucket sort
static void bucketSort(List<Double> arr, int n)
{
// 1) Create n empty buckets
List<Double> []b = new List<Double>[n];
for (int i = 0; i < b.Length; i++)
b[i] = new List<Double>();
// 2) Put array elements in different
// buckets
for (int i = 0; i < n; i++)
{
int bi = (int)(n*arr[i]); // Index in bucket
b[bi].Add(arr[i]);
}
// 3) Sort individual buckets
for (int i = 0; i < n; i++)
b[i].Sort();
// 4) Concatenate all buckets into []arr
int index = 0;
arr.Clear();
for (int i = 0; i < n; i++)
for (int j = 0; j < b[i].Count; j++)
arr.Add(b[i][j]);
}
// This function mainly splits array into two
// and then calls bucketSort() for two arrays.
static void sortMixed(double []arr, int n)
{
List<Double>Neg = new List<Double>();
List<Double>Pos = new List<Double>();
// traverse array elements
for (int i = 0; i < n; i++)
{
if (arr[i] < 0)
// store -Ve elements by
// converting into +ve element
Neg.Add (-1 * arr[i]) ;
else
// store +ve elements
Pos.Add (arr[i]) ;
}
bucketSort(Neg, (int)Neg.Count);
bucketSort(Pos, (int)Pos.Count);
// First store elements of Neg[] array
// by converting into -ve
for (int i = 0; i < Neg.Count; i++)
arr[i] = -1 * Neg[ Neg.Count -1 - i];
// store +ve element
for(int j = Neg.Count; j < n; j++)
arr[j] = Pos[j - Neg.Count];
}
/* Driver program to test above function */
public static void Main(String[] args)
{
double []arr = {-0.897, 0.565, 0.656,
-0.1234, 0, 0.3434};
int n = arr.Length;
sortMixed(arr, n);
Console.Write("Sorted array is \n");
for (int i = 0; i < n; i++)
Console.Write(arr[i] + " ");
}
}
// This code is contributed by Rajput-Ji
JavaScript
function bucketSort(arr, n) {
// 1) Create n empty buckets
var b = new Array(n);
for (var i = 0; i < n; i++) {
b[i] = [];
}
// 2) Put array elements in different buckets
for (var i = 0; i < n; i++) {
var bi = Math.floor(n * arr[i]); // Index in bucket
b[bi].push(arr[i]);
}
// 3) Sort individual buckets
for (var i = 0; i < n; i++) {
b[i].sort();
}
// 4) Concatenate all buckets into arr[]
var index = 0;
arr.length = 0;
for (var i = 0; i < n; i++) {
for (var j = 0; j < b[i].length; j++) {
arr.push(b[i][j]);
}
}
}
// This function mainly splits array into two
// and then calls bucketSort() for two arrays.
function sortMixed(arr, n) {
var Neg = [];
var Pos = [];
// traverse array elements
for (var i = 0; i < n; i++) {
if (arr[i] < 0) {
// store -Ve elements by converting into +ve element
Neg.push(-1 * arr[i]);
} else {
// store +ve elements
Pos.push(arr[i]);
}
}
bucketSort(Neg, Neg.length);
bucketSort(Pos, Pos.length);
// First store elements of Neg[] array
// by converting into -ve
for (var i = 0; i < Neg.length; i++) {
arr[i] = -1 * Neg[Neg.length - 1 - i];
}
// store +ve element
for (var j = Neg.length; j < n; j++) {
arr[j] = Pos[j - Neg.length];
}
}
/* Driver program to test above function */
(function main() {
var arr = [-0.897, 0.565, 0.656, -0.1234, 0, 0.3434];
var n = arr.length;
sortMixed(arr, n);
console.log("Sorted array is");
for (var i = 0; i < n; i++) {
console.log(arr[i] + " ");
}
})();
OutputSorted array is
-0.897 -0.1234 0 0.3434 0.565 0.656
Similar Reads
Sorting Algorithms
A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to Sorting Techniques â Data Structure and Algorithm Tutorials
Sorting refers to rearrangement of a given array or list of elements according to a comparison operator on the elements. The comparison operator is used to decide the new order of elements in the respective data structure. Why Sorting Algorithms are ImportantThe sorting algorithm is important in Com
3 min read
Most Common Sorting Algorithms
Selection Sort
Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read
Bubble Sort Algorithm
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Insertion Sort Algorithm
Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Merge Sort - Data Structure and Algorithms Tutorials
Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Quick Sort
QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Heap Sort - Data Structures and Algorithms Tutorials
Heap sort is a comparison-based sorting technique based on Binary Heap Data Structure. It can be seen as an optimization over selection sort where we first find the max (or min) element and swap it with the last (or first). We repeat the same process for the remaining elements. In Heap Sort, we use
14 min read
Counting Sort - Data Structures and Algorithms Tutorials
Counting Sort is a non-comparison-based sorting algorithm. It is particularly efficient when the range of input values is small compared to the number of elements to be sorted. The basic idea behind Counting Sort is to count the frequency of each distinct element in the input array and use that info
9 min read