Binary Tree to Binary Search Tree Conversion Last Updated : 01 Oct, 2024 Comments Improve Suggest changes Like Article Like Report Try it on GfG Practice Given a Binary Tree, the task is to convert it to a Binary Search Tree. The conversion must be done in such a way that keeps the original structure of the Binary Tree. ExamplesInput: Output: Explanation: The above Binary tree is converted to Binary Search tree by keeping the original structure of Binary Tree. Approach:The idea to recursively traverse the binary tree and store the nodes in an array. Sort the array, and perform in-order traversal of the tree and update the value of each node to the corresponding value in tree.Below is the implementation of the above approach: C++ // C++ Program to convert binary // tree to binary search tree. #include <bits/stdc++.h> using namespace std; class Node { public: int data; Node* left, *right; Node(int x) { data = x; left = nullptr; right = nullptr; } }; // Inorder traversal to store the nodes in a vector void inorder(Node* root, vector<int>& nodes) { if (root == nullptr) { return; } inorder(root->left, nodes); nodes.push_back(root->data); inorder(root->right, nodes); } // Inorder traversal to convert tree // to BST. void constructBST(Node* root, vector<int> nodes, int& index) { if (root == nullptr) return; constructBST(root->left, nodes, index); // Update root value root->data = nodes[index++]; constructBST(root->right, nodes, index); } // Function to convert a binary tree to a binary search tree Node* binaryTreeToBST(Node* root) { vector<int> nodes; inorder(root, nodes); // sort the nodes sort(nodes.begin(), nodes.end()); int index = 0; constructBST(root, nodes, index); return root; } // Function to print the inorder traversal of a binary tree void printInorder(Node* root) { if (root == NULL) { return; } printInorder(root->left); cout << root->data << " "; printInorder(root->right); } int main() { // Creating the tree // 10 // / \ // 2 7 // / \ // 8 4 Node* root = new Node(10); root->left = new Node(2); root->right = new Node(7); root->left->left = new Node(8); root->left->right = new Node(4); Node* ans = binaryTreeToBST(root); printInorder(ans); return 0; } Java // Java Program to convert binary // tree to binary search tree. import java.util.ArrayList; import java.util.Collections; class Node { int data; Node left, right; Node(int x) { data = x; left = null; right = null; } } class GfG { // Inorder traversal to store the nodes in a vector static void inorder(Node root, ArrayList<Integer> nodes) { if (root == null) { return; } inorder(root.left, nodes); nodes.add(root.data); inorder(root.right, nodes); } // Inorder traversal to convert tree to BST. static void constructBST(Node root, ArrayList<Integer> nodes, int[] index) { if (root == null) return; constructBST(root.left, nodes, index); // Update root value root.data = nodes.get(index[0]); index[0]++; constructBST(root.right, nodes, index); } // Function to convert a binary tree to a binary search tree static Node binaryTreeToBST(Node root) { ArrayList<Integer> nodes = new ArrayList<>(); inorder(root, nodes); // sort the nodes Collections.sort(nodes); int[] index = {0}; constructBST(root, nodes, index); return root; } // Function to print the inorder traversal of a binary tree static void printInorder(Node root) { if (root == null) { return; } printInorder(root.left); System.out.print(root.data + " "); printInorder(root.right); } public static void main(String[] args) { // Creating the tree // 10 // / \ // 2 7 // / \ // 8 4 Node root = new Node(10); root.left = new Node(2); root.right = new Node(7); root.left.left = new Node(8); root.left.right = new Node(4); Node ans = binaryTreeToBST(root); printInorder(ans); } } Python # Python Program to convert binary # tree to binary search tree. class Node: def __init__(self, x): self.data = x self.left = None self.right = None # Inorder traversal to store the nodes in a vector def inorder(root, nodes): if root is None: return inorder(root.left, nodes) nodes.append(root.data) inorder(root.right, nodes) # Inorder traversal to convert tree to BST. def constructBst(root, nodes, index): if root is None: return constructBst(root.left, nodes, index) # Update root value root.data = nodes[index[0]] index[0] += 1 constructBst(root.right, nodes, index) # Function to convert a binary tree to a binary search tree def binaryTreeToBst(root): nodes = [] inorder(root, nodes) # sort the nodes nodes.sort() index = [0] constructBst(root, nodes, index) return root # Function to print the inorder traversal of a binary tree def printInorder(root): if root is None: return printInorder(root.left) print(root.data, end=" ") printInorder(root.right) if __name__ == "__main__": # Creating the tree # 10 # / \ # 2 7 # / \ # 8 4 root = Node(10) root.left = Node(2) root.right = Node(7) root.left.left = Node(8) root.left.right = Node(4) ans = binaryTreeToBst(root) printInorder(ans) C# // C# Program to convert binary // tree to binary search tree. using System; using System.Collections.Generic; class Node { public int data; public Node left, right; public Node(int x) { data = x; left = null; right = null; } } class GfG { // Inorder traversal to store the nodes in a list static void Inorder(Node root, List<int> nodes) { if (root == null) { return; } Inorder(root.left, nodes); nodes.Add(root.data); Inorder(root.right, nodes); } // Inorder traversal to convert tree to BST. static void ConstructBST(Node root, List<int> nodes, ref int index) { if (root == null) return; ConstructBST(root.left, nodes, ref index); // Update root value root.data = nodes[index]; index++; ConstructBST(root.right, nodes, ref index); } // Function to convert a binary tree to a binary search tree static Node BinaryTreeToBST(Node root) { List<int> nodes = new List<int>(); Inorder(root, nodes); // sort the nodes nodes.Sort(); int index = 0; ConstructBST(root, nodes, ref index); return root; } // Function to print the inorder traversal of a binary tree static void PrintInorder(Node root) { if (root == null) { return; } PrintInorder(root.left); Console.Write(root.data + " "); PrintInorder(root.right); } static void Main() { // Creating the tree // 10 // / \ // 2 7 // / \ // 8 4 Node root = new Node(10); root.left = new Node(2); root.right = new Node(7); root.left.left = new Node(8); root.left.right = new Node(4); Node ans = BinaryTreeToBST(root); PrintInorder(ans); } } JavaScript // JavaScript Program to convert binary // tree to binary search tree. class Node { constructor(x) { this.data = x; this.left = null; this.right = null; } } // Inorder traversal to store the nodes in a vector function inorderTrav(root, nodes) { if (root === null) { return; } inorderTrav(root.left, nodes); nodes.push(root.data); inorderTrav(root.right, nodes); } // Inorder traversal to convert tree to BST. function constructBST(root, nodes, index) { if (root === null) return; constructBST(root.left, nodes, index); // Update root value root.data = nodes[index[0]]; index[0]++; constructBST(root.right, nodes, index); } // Function to convert a binary tree to a binary search tree function binaryTreeToBST(root) { let nodes = []; inorderTrav(root, nodes); // sort the nodes nodes.sort((a, b) => a - b); let index = [0]; constructBST(root, nodes, index); return root; } // Function to print the inorder traversal of a binary tree function printInorder(root) { if (root === null) { return; } printInorder(root.left); console.log(root.data); printInorder(root.right); } // Creating the tree // 10 // / \ // 2 7 // / \ // 8 4 let root = new Node(10); root.left = new Node(2); root.right = new Node(7); root.left.left = new Node(8); root.left.right = new Node(4); let ans = binaryTreeToBST(root); printInorder(ans); Output2 4 7 8 10 Time Complexity: O(nlogn), for sorting the array.Auxiliary Space: O(n), for storing nodes in an array.Related article: Binary Tree to Binary Search Tree Conversion using STL set Comment More infoAdvertise with us Next Article Binary Tree to Binary Search Tree Conversion K kartik Follow Improve Article Tags : Tree Binary Search Tree DSA Amazon Practice Tags : AmazonBinary Search TreeTree Similar Reads Binary Search Tree A Binary Search Tree (BST) is a type of binary tree data structure in which each node contains a unique key and satisfies a specific ordering property:All nodes in the left subtree of a node contain values strictly less than the nodeâs value. All nodes in the right subtree of a node contain values s 4 min read Introduction to Binary Search Tree Binary Search Tree is a data structure used in computer science for organizing and storing data in a sorted manner. Binary search tree follows all properties of binary tree and for every nodes, its left subtree contains values less than the node and the right subtree contains values greater than the 3 min read Applications of BST Binary Search Tree (BST) is a data structure that is commonly used to implement efficient searching, insertion, and deletion operations along with maintaining sorted sequence of data. Please remember the following properties of BSTs before moving forward.The left subtree of a node contains only node 3 min read Applications, Advantages and Disadvantages of Binary Search Tree A Binary Search Tree (BST) is a data structure used to storing data in a sorted manner. Each node in a Binary Search Tree has at most two children, a left child and a right child, with the left child containing values less than the parent node and the right child containing values greater than the p 2 min read Insertion in Binary Search Tree (BST) Given a BST, the task is to insert a new node in this BST.Example: How to Insert a value in a Binary Search Tree:A new key is always inserted at the leaf by maintaining the property of the binary search tree. We start searching for a key from the root until we hit a leaf node. Once a leaf node is fo 15 min read Searching in Binary Search Tree (BST) Given a BST, the task is to search a node in this BST. For searching a value in BST, consider it as a sorted array. Now we can easily perform search operation in BST using Binary Search Algorithm. Input: Root of the below BST Output: TrueExplanation: 8 is present in the BST as right child of rootInp 7 min read Deletion in Binary Search Tree (BST) Given a BST, the task is to delete a node in this BST, which can be broken down into 3 scenarios:Case 1. Delete a Leaf Node in BST Case 2. Delete a Node with Single Child in BSTDeleting a single child node is also simple in BST. Copy the child to the node and delete the node. Case 3. Delete a Node w 10 min read Binary Search Tree (BST) Traversals â Inorder, Preorder, Post Order Given a Binary Search Tree, The task is to print the elements in inorder, preorder, and postorder traversal of the Binary Search Tree. Input: A Binary Search TreeOutput: Inorder Traversal: 10 20 30 100 150 200 300Preorder Traversal: 100 20 10 30 200 150 300Postorder Traversal: 10 30 20 150 300 200 1 10 min read Balance a Binary Search Tree Given a BST (Binary Search Tree) that may be unbalanced, the task is to convert it into a balanced BST that has the minimum possible height.Examples: Input: Output: Explanation: The above unbalanced BST is converted to balanced with the minimum possible height.Input: Output: Explanation: The above u 10 min read Self-Balancing Binary Search Trees Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keep the height as small as possible when insertion and deletion operations are performed on the tree. The height is typically maintained in order of logN so that all operations take O(logN) time on average 4 min read Like