// C# program for Bellman-Ford's single source
// shortest path algorithm.
using System;
class GFG
{
// The main function that finds shortest
// distances from src to all other vertices
// using Bellman-Ford algorithm. The function
// also detects negative weight cycle
// The row graph[i] represents i-th edge with
// three values u, v and w.
static void BellmanFord(int [,]graph, int V,
int E, int src)
{
// Initialize distance of all vertices as infinite.
int []dis = new int[V];
for (int i = 0; i < V; i++)
dis[i] = int.MaxValue;
// initialize distance of source as 0
dis[src] = 0;
// Relax all edges |V| - 1 times. A simple
// shortest path from src to any other
// vertex can have at-most |V| - 1 edges
for (int i = 0; i < V - 1; i++)
{
for (int j = 0; j < E; j++)
{
if (dis[graph[j, 0]] = int.MaxValue && dis[graph[j, 0]] + graph[j, 2] <
dis[graph[j, 1]])
dis[graph[j, 1]] =
dis[graph[j, 0]] + graph[j, 2];
}
}
// check for negative-weight cycles.
// The above step guarantees shortest
// distances if graph doesn't contain
// negative weight cycle. If we get a
// shorter path, then there is a cycle.
for (int i = 0; i < E; i++)
{
int x = graph[i, 0];
int y = graph[i, 1];
int weight = graph[i, 2];
if (dis[x] != int.MaxValue &&
dis[x] + weight < dis[y])
Console.WriteLine("Graph contains negative" +
" weight cycle");
}
Console.WriteLine("Vertex Distance from Source");
for (int i = 0; i < V; i++)
Console.WriteLine(i + "\t\t" + dis[i]);
}
// Driver code
public static void Main(String[] args)
{
int V = 5; // Number of vertices in graph
int E = 8; // Number of edges in graph
// Every edge has three values (u, v, w) where
// the edge is from vertex u to v. And weight
// of the edge is w.
int [,]graph = {{ 0, 1, -1 }, { 0, 2, 4 },
{ 1, 2, 3 }, { 1, 3, 2 },
{ 1, 4, 2 }, { 3, 2, 5 },
{ 3, 1, 1 }, { 4, 3, -3 }};
BellmanFord(graph, V, E, 0);
}
}
// This code is contributed by Princi Singh