Basic Properties of a Graph
Last Updated :
15 Mar, 2023
A Graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes also referred to as vertices and the edges are lines or arcs that connect any two nodes in the graph.
The basic properties of a graph include:
- Vertices (nodes): The points where edges meet in a graph are known as vertices or nodes. A vertex can represent a physical object, concept, or abstract entity.
- Edges: The connections between vertices are known as edges. They can be undirected (bidirectional) or directed (unidirectional).
- Weight: A weight can be assigned to an edge, representing the cost or distance between two vertices. A weighted graph is a graph where the edges have weights.
- Degree: The degree of a vertex is the number of edges that connect to it. In a directed graph, the in-degree of a vertex is the number of edges that point to it, and the out-degree is the number of edges that start from it.
- Path: A path is a sequence of vertices that are connected by edges. A simple path does not contain any repeated vertices or edges.
- Cycle: A cycle is a path that starts and ends at the same vertex. A simple cycle does not contain any repeated vertices or edges.
- Connectedness: A graph is said to be connected if there is a path between any two vertices. A disconnected graph is a graph that is not connected.
- Planarity: A graph is said to be planar if it can be drawn on a plane without any edges crossing each other.
- Bipartiteness: A graph is said to be bipartite if its vertices can be divided into two disjoint sets such that no two vertices in the same set are connected by an edge.
Properties of Graphs are basically used for the characterization of graphs depending on their structures. We defined these properties in specific terms that pertain to the domain of graph theory. In this article, we are going to discuss some properties of Graphs these are as follows:
Distance between two Vertices:
It is basically the number of edges that are available in the shortest path between vertex A and vertex B.If there is more than one edge that is used to connect two vertices then we basically considered the shortest path as the distance between these two vertices.
Notation used :
d(A, B)
here function d is basically showing the distance between vertex A and vertex B.
- Let us understand this using an example:

- In the above diagram, let's try to find the distance between vertices b and d.
d(b, d)
We can go from vertex b to vertex d in different ways such as
1.ba, af, fe, ed here the d(b, d) will be 4.
2.ba, af, fc, cd here the d(b, d) will be 4.
3.bc, cf, fe, ed here the d(b, d) will be 4.
4.bc, cd here the d(b, d) will be 2.
hence the minimum distance between vertex b and vertex d is 2.
The eccentricity of a Vertex: Maximum distance from a vertex to all other vertices is considered as the Eccentricity of that vertex.
Notation used:
e(V)
here e(v) determines the eccentricity of vertex V.
- Let us try to understand this using following example.

From the above diagram lets try to find the eccentricity of vertex b.
e(b)
d(b, a)=1
d(b, c)=1
d(b, d)=2
d(b, e)=3
d(b, f)=2
d(b, g)=2
Hence the eccentricity of vertex b is 3
Radius of a Connected Graph: The minimum value of eccentricity from all vertices is basically considered as the radius of connected graph.
Notation used:
r(G)
here G is the connected graph.
Let us try to understand this using following example.

From the above diagram:
r(G) is 2.
Because the minimum value of eccentricity from all vertices is 2.
Diameter of A Connected Graph: Unlike the radius of the connected graph here we basically used the maximum value of eccentricity from all vertices to determine the diameter of the graph.
Notation used:
d(G)
where G is the connected graph.
- Let us try to understand this using following example.

From the above diagram:
d(G) is 3.
Because the maximum value of eccentricity from all vertices is 3.
Central Point and Centre: The vertex having minimum eccentricity is considered as the central point of the graph.And the sets of all central point is considered as the centre of Graph.
if
e(V)=r(G)
then v is the central point.
- Let us try to understand this using following example.

In the above diagram the central point will be f.
because
e(f)=r(G)=2
hence f is considered as the central point of graph.
Hence f is also the centre of the graph.
Similar Reads
Basics & Prerequisites
Data Structures
Array Data StructureIn this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
3 min read
String in Data StructureA string is a sequence of characters. The following facts make string an interesting data structure.Small set of elements. Unlike normal array, strings typically have smaller set of items. For example, lowercase English alphabet has only 26 characters. ASCII has only 256 characters.Strings are immut
2 min read
Hashing in Data StructureHashing is a technique used in data structures that efficiently stores and retrieves data in a way that allows for quick access. Hashing involves mapping data to a specific index in a hash table (an array of items) using a hash function. It enables fast retrieval of information based on its key. The
2 min read
Linked List Data StructureA linked list is a fundamental data structure in computer science. It mainly allows efficient insertion and deletion operations compared to arrays. Like arrays, it is also used to implement other data structures like stack, queue and deque. Hereâs the comparison of Linked List vs Arrays Linked List:
2 min read
Stack Data StructureA Stack is a linear data structure that follows a particular order in which the operations are performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out). LIFO implies that the element that is inserted last, comes out first and FILO implies that the element that is inserted first
2 min read
Queue Data StructureA Queue Data Structure is a fundamental concept in computer science used for storing and managing data in a specific order. It follows the principle of "First in, First out" (FIFO), where the first element added to the queue is the first one to be removed. It is used as a buffer in computer systems
2 min read
Tree Data StructureTree Data Structure is a non-linear data structure in which a collection of elements known as nodes are connected to each other via edges such that there exists exactly one path between any two nodes. Types of TreeBinary Tree : Every node has at most two childrenTernary Tree : Every node has at most
4 min read
Graph Data StructureGraph Data Structure is a collection of nodes connected by edges. It's used to represent relationships between different entities. If you are looking for topic-wise list of problems on different topics like DFS, BFS, Topological Sort, Shortest Path, etc., please refer to Graph Algorithms. Basics of
3 min read
Trie Data StructureThe Trie data structure is a tree-like structure used for storing a dynamic set of strings. It allows for efficient retrieval and storage of keys, making it highly effective in handling large datasets. Trie supports operations such as insertion, search, deletion of keys, and prefix searches. In this
15+ min read
Algorithms
Searching AlgorithmsSearching algorithms are essential tools in computer science used to locate specific items within a collection of data. In this tutorial, we are mainly going to focus upon searching in an array. When we search an item in an array, there are two most common algorithms used based on the type of input
2 min read
Sorting AlgorithmsA Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to RecursionThe process in which a function calls itself directly or indirectly is called recursion and the corresponding function is called a recursive function. A recursive algorithm takes one step toward solution and then recursively call itself to further move. The algorithm stops once we reach the solution
14 min read
Greedy AlgorithmsGreedy algorithms are a class of algorithms that make locally optimal choices at each step with the hope of finding a global optimum solution. At every step of the algorithm, we make a choice that looks the best at the moment. To make the choice, we sometimes sort the array so that we can always get
3 min read
Graph AlgorithmsGraph is a non-linear data structure like tree data structure. The limitation of tree is, it can only represent hierarchical data. For situations where nodes or vertices are randomly connected with each other other, we use Graph. Example situations where we use graph data structure are, a social net
3 min read
Dynamic Programming or DPDynamic Programming is an algorithmic technique with the following properties.It is mainly an optimization over plain recursion. Wherever we see a recursive solution that has repeated calls for the same inputs, we can optimize it using Dynamic Programming. The idea is to simply store the results of
3 min read
Bitwise AlgorithmsBitwise algorithms in Data Structures and Algorithms (DSA) involve manipulating individual bits of binary representations of numbers to perform operations efficiently. These algorithms utilize bitwise operators like AND, OR, XOR, NOT, Left Shift, and Right Shift.BasicsIntroduction to Bitwise Algorit
4 min read
Advanced
Segment TreeSegment Tree is a data structure that allows efficient querying and updating of intervals or segments of an array. It is particularly useful for problems involving range queries, such as finding the sum, minimum, maximum, or any other operation over a specific range of elements in an array. The tree
3 min read
Pattern SearchingPattern searching algorithms are essential tools in computer science and data processing. These algorithms are designed to efficiently find a particular pattern within a larger set of data. Patten SearchingImportant Pattern Searching Algorithms:Naive String Matching : A Simple Algorithm that works i
2 min read
GeometryGeometry is a branch of mathematics that studies the properties, measurements, and relationships of points, lines, angles, surfaces, and solids. From basic lines and angles to complex structures, it helps us understand the world around us.Geometry for Students and BeginnersThis section covers key br
2 min read
Interview Preparation
Practice Problem