Open In App

Array Range Queries to count Powerful numbers with updates

Last Updated : 12 Jul, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array of N integers, the task is to perform the following two operations on the given array: 
 

query(L, R): Print the number of Powerful numbers in the subarray from L to R. 
update(i, x) : update the value at index i to x, i.e arr[i] = x 
 


A number N is said to be Powerful Number if, for every prime factor p of it, p2 also divides it.
Prerequisites: Powerful Number, Segment tree
Examples: 
 

Input: 
arr = {1, 12, 3, 8, 17, 9} 
Query 1: query(L = 1, R = 4) 
Query 2: update(i = 1, x = 9) 
Query 3: query(L = 1, R = 4) 
Output: 


Explanation: 
Query 1: Powerful numbers in range arr[1:4] is 8. 
Query 2: Powerful numbers in range arr[1:4] after update operation is 9 and 8. 
 


 


Approach:
Since we need to handle point updates and range queries so we will use a segment tree to solve the problem. 
 

  1. We will precompute all the Powerful numbers till the maximum value that arr[i] can take, say MAX
    The time complexity of this operation will be O(MAX * sqrt(MAX)) 
     
  2. Building the segment tree: 
    • The problem can be reduced to subarray sum using segment tree
       
    • Now we can build the segment tree where the leaf nodes will represent 1(when a number is a Powerful number) or 0(when a number is not a powerful number). All the internal nodes will have the sum of both of its children. 
       
  3. Point Updates: 
    • To update an element we need to look at the interval in which the element is and recurse accordingly on the left or the right child. If the element to be updated is a Powerful number then we update the leaf as 1, else 0. 
       
  4. Range Query: 
    • Whenever we get a query from L to R, then we can query the segment tree for the sum of nodes in range L to R, which in turn represents the number of Powerful numbers in the range L to R. 
       


Below is the implementation of the above approach: 
 

C++
// C++ Program to find the number
// of Powerful numbers in subarray
// using segment tree
#include <bits/stdc++.h>
using namespace std;

#define MAX 100000

// Size of segment tree = 2^{log(MAX)+1}
int tree[3 * MAX];
int arr[MAX];
bool powerful[MAX + 1];

// Function to check if the 
// number is powerful
bool isPowerful(int n)
{
    // First divide the number
    // repeatedly by 2
    while (n % 2 == 0)
    {
        int power = 0;
        while (n % 2 == 0)
        {
            n /= 2;
            power++;
        }

        // If only 2^1 divides 
        // n (not higher powers),
        // then return false
        if (power == 1)
            return false;
    }

    // If n is not a power of 2 then 
    // this loop will execute
    // repeat above process
    for (int factor = 3; factor 
         <= sqrt(n); factor += 2)
    {
        // Find highest power of 
        // "factor" that divides n
        int power = 0;
        while (n % factor == 0)
        {
            n = n / factor;
            power++;
        }

        // If only factor^1 divides n 
        // (not higher powers),
        // then return false
        if (power == 1)
            return false;
    }

    // n must be 1 now if it is not 
    // a prime numenr. Since prime 
    // numbers are not powerful, 
    // we return false if n is not 1.
    return (n == 1);
}

// Function to build the array
void BuildArray(int input[], int n)
{
    for (int i = 0; i < n; i++)
    {
        // Check if input[i] is
        // a Powerful number or not
        if (powerful[input[i]])
            arr[i] = 1;

        else
            arr[i] = 0;
    }
    return;

}

// A utility function to get the middle
// index from corner indexes.
int getMid(int s, int e)
{
    return s + (e - s) / 2;
}

/* A recursive function that constructs
 Segment Tree for array[ss..se].

si --> Index of current node in the 
       segment tree. Initially 0 is 
       passed as root is always
       at index 0.
ss & se --> Starting and ending indexes 
            of the segment represented by
            current node, i.e., st[index]
*/
void constructSTUtil(int si, int ss,
                     int se)
{
    if (ss == se) {
        // If there is one element 
        // in array
        tree[si] = arr[ss];
        return;
    }

    // If there are more than one elements,
    // then recur for left and right subtrees 
    // and store the sum of the two
    // values in this node
    else {
        int mid = getMid(ss, se);
        
        constructSTUtil(2 * si + 1, 
                        ss, mid);
        
        constructSTUtil(2 * si + 2, 
                        mid + 1, se);
        
        tree[si] = tree[2 * si + 1]
                  + tree[2 * si + 2];
    }
}

/* A recursive function to update the 
nodes which have the given index
in their range.

si --> Index of current node in the segment tree.
       Initially 0 is passed as root is always
       at index 0.
ss & se --> Starting and ending indexes of the
            segment represented by current node,
            i.e., st[index]

ind --> Index of array to be updated

val --> The new value to be updated

*/
void updateValueUtil(int si, int ss, int se, 
                     int idx, int val)
{
    // Leaf node
    if (ss == se) {
        tree[si] = tree[si] - arr[idx] + val;
        arr[idx] = val;
    }
    else {
        int mid = getMid(ss, se);
        
        // If idx is in the left child,
        // recurse on the left child
        if (ss <= idx and idx <= mid)
            updateValueUtil(2 * si + 1, ss,
                            mid, idx, val);

        // If idx is in the right child,
        // recurse on the right child
        else
            updateValueUtil(2 * si + 2, mid + 1, 
                            se, idx, val);

        // Internal node will have the sum 
        // of both of its children
        tree[si] = tree[2 * si + 1]
                   + tree[2 * si + 2];
    }
}

/* A recursive function to get the number
of Powerful numbers in a given 
range of array indexes

si --> Index of current node in the segment tree.
       Initially 0 is passed as root is always
       at index 0.
ss & se --> Starting and ending indexes of the
            segment represented by current node,
            i.e., st[index]
l & r --> Starting and ending indexes of
          query range


 */
int queryPowerfulUtil(int si, int ss, int se, 
                      int l, int r)
{
    // If segment of this node is
    // outside the given range
    if (r < ss or se < l) {
        return 0;
    }
    // If segment of this node is a part 
    // of given range, then return the
    // number of composites
    // in the segment
    if (l <= ss and se <= r) {
        return tree[si];
    }

    // If a part of this segment
    // overlaps with the given range
    int mid = getMid(ss, se);
    int p1 = queryPowerfulUtil(2 * si + 1, 
                               ss, mid, l,
                               r);
    int p2 = queryPowerfulUtil(2 * si + 2,
                               mid + 1, 
                               se, l, r);
    return (p1 + p2);
}

void queryPowerful(int n, int l, int r)
{
    printf("Number of Powerful numbers between %d to %d = %d\n",
           l, r, queryPowerfulUtil(0, 0,
                                   n - 1,
                                   l, r));
}

void updateValue(int n, int ind, int val)
{
    // If val is a Powerful number
    // we will update 1 in tree
    if (powerful[val])
        updateValueUtil(0, 0, n - 1,
                        ind, 1);
    else
        updateValueUtil(0, 0, n - 1,
                        ind, 0);
}

void precomputePowerful()
{

    memset(powerful, false, 
           sizeof(powerful));

    // Computing all Powerful 
    // numbers till MAX
    for (int i = 1; i <= MAX; i++)
    {
        // If the number is 
        // Powerful make 
        // powerful[i] = true
        if (isPowerful(i))
            powerful[i] = true;
    }
}

// Driver Code
int main()
{
    // Precompute all the powerful 
    // numbers till MAX
    precomputePowerful();

    // Input array
    int input[] = { 4, 5, 18, 27, 40, 144 };
    
    // Size of Input array
    int n = sizeof(input) / sizeof(input[0]);

    // Build the array.
    BuildArray(input, n);
    
    // Build segment tree from 
    // given array
    constructSTUtil(0, 0, n - 1);

    // Query 1: Query(L = 0, R = 3)
    int l = 0, r = 3;
    queryPowerful(n, l, r);

    // Query 2: Update(i = 1, x = 9), 
    // i.e Update input[i] to x
    int i = 1;
    int val = 9;
    updateValue(n, i, val);

    // Query 3: Query(L = 0, R = 3)
    queryPowerful(n, l, r);


    return 0;
}
Java Python3 C# JavaScript

Output: 
Number of Powerful numbers between 0 to 3 = 2
Number of Powerful numbers between 0 to 3 = 3

 

Time Complexity: O(logN) per query
Space Complexity:  O(MAX*log2MAX). This is because the size of the segment tree used in the program is 3 times the value of MAX, and the maximum height of the segment tree is log2(MAX)+1. Therefore, the total space used by the segment tree is 3 times the value of MAX multiplied by the maximum height of the segment tree, which is O(MAX log2MAX).

In addition to the segment tree, the program also uses three arrays: arr, powerful, and tree. The size of arr and powerful is MAX, and the size of tree is 3 times MAX. Therefore, the total space used by these arrays is O(MAX).


Practice Tags :

Similar Reads