Adapter Design Pattern Last Updated : 23 Jul, 2025 Comments Improve Suggest changes Like Article Like Report One structural design pattern that enables the usage of an existing class's interface as an additional interface is the adapter design pattern. To make two incompatible interfaces function together, it serves as a bridge. This pattern involves a single class, the adapter, responsible for joining functionalities of independent or incompatible interfaces.Table of ContentWhat is Adapter Design Pattern?Real-World Example of Adapter Design PatternComponents of Adapter Design PatternDifferent implementations of Adapter Design PatternHow Adapter Design Pattern works?Adapter Design Pattern ExamplePros of Adapter Design PatternCons of Adapter Design PatternWhen to use Adapter Design Pattern?When not to use Adapter Design Pattern?What is Adapter Design Pattern?Two incompatible interfaces or systems can cooperate by using the adapter design pattern, a structural design pattern. Because of incompatible interfaces, it serves as a bridge between two classes that would not otherwise be able to communicate. The adapter approach is very helpful when attempting to incorporate third-party libraries or legacy code into a new system. Real-World Example of Adapter Design PatternLet's understand this concept using a simple example:Suppose you have two buddies, one of them speaks French exclusively and the other English exclusively. The language barrier prevents them from communicating the way you want them to. You act as an adapter, translating messages between them. Your role allows the English speaker to convey messages to you, and you convert those messages into French for the other person. In this way, despite the language difference, your adaptation enables smooth communication between your friends. This role you play is similar to the Adapter design pattern, bridging the gap between incompatible interfaces.Components of Adapter Design PatternBelow are the components of adapter design pattern:Target Interface: Defines the interface expected by the client. It represents the set of operations that the client code can use. It's the common interface that the client code interacts with.Adaptee: The existing class or system with an incompatible interface that needs to be integrated into the new system. It's the class or system that the client code cannot directly use due to interface mismatches.Adapter: A class that implements the target interface and internally uses an instance of the adaptee to make it compatible with the target interface. It acts as a bridge, adapting the interface of the adaptee to match the target interface.Client: The code that uses the target interface to interact with objects. It remains unaware of the specific implementation details of the adaptee and the adapter. It's the code that benefits from the integration of the adaptee into the system through the adapter.Different implementations of Adapter Design PatternThe Adapter Design Pattern can be applied in various ways depending on the programming language and the specific context. Here are the primary implementations:1. Class Adapter (Inheritance-based)In this approach, the adapter class inherits from both the target interface (the one the client expects) and the adaptee (the existing class needing adaptation). Programming languages that allow multiple inheritance, like C++, are more likely to use this technique. However, in languages like Java and C#, which do not support multiple inheritance, this approach is less frequently used.2. Object Adapter (Composition-based)The object adapter employs composition instead of inheritance. In this implementation, the adapter holds an instance of the adaptee and implements the target interface. This approach is more flexible as it allows a single adapter to work with multiple adaptees and does not require the complexities of inheritance. The object adapter is widely used in languages like Java and C#.3. Two-way AdapterA two-way adapter can function as both a target and an adaptee, depending on which interface is being invoked. This type of adapter is particularly useful when two systems need to work together and require mutual adaptation.4. Interface Adapter (Default Adapter)When only a few methods from an interface are necessary, an interface adapter can be employed. This is especially useful in cases where the interface contains many methods, and the adapter provides default implementations for those that are not needed. This approach is often seen in languages like Java, where abstract classes or default method implementations in interfaces simplify the implementation process.How Adapter Design Pattern works?Below is how adapter design pattern works:Step 1: The client initiates a request by calling a method on the adapter via the target interface. Step 2: The adapter maps or transforms the client's request into a format that the adaptee can understand using the adaptee's interface. Step 3: The adaptee does the actual job based on the translated request from the adapter. Step 4: The client receives the results of the call, remaining unaware of the adapter's presence or the specific details of the adaptee.Adapter Design Pattern ExampleLet's understand adapter design pattern through an example:Problem Statement:Let's consider a scenario where we have an existing system that uses a LegacyPrinter class with a method named printDocument() which we want to adapt into a new system that expects a Printer interface with a method named print(). We'll use the Adapter design pattern to make these two interfaces compatible.1. Target Interface (Printer)The interface that the client code expects. C++ // Target Interface class Printer { public: virtual void print() = 0; }; 2. Adaptee (LegacyPrinter)The existing class with an incompatible interface. C++ // Adaptee class LegacyPrinter { public: void printDocument() { std::cout << "Legacy Printer is printing a document." << std::endl; } }; 3. Adapter (PrinterAdapter)The class that adapts the LegacyPrinter to the Printer interface. C++ // Adapter class PrinterAdapter : public Printer { private: LegacyPrinter legacyPrinter; public: void print() override { legacyPrinter.printDocument(); } }; 4. Client CodeThe code that interacts with the Printer interface. C++ // Client Code void clientCode(Printer& printer) { printer.print(); } Complete Code for the above example: C++ // Adapter Design Pattern Example Code #include <iostream> // Target Interface class Printer { public: virtual void print() = 0; }; // Adaptee class LegacyPrinter { public: void printDocument() { std::cout << "Legacy Printer is printing a document." << std::endl; } }; // Adapter class PrinterAdapter : public Printer { private: LegacyPrinter legacyPrinter; public: void print() override { legacyPrinter.printDocument(); } }; // Client Code void clientCode(Printer& printer) { printer.print(); } int main() { // Using the Adapter PrinterAdapter adapter; clientCode(adapter); return 0; } OutputLegacy Printer is printing a document.Pros of Adapter Design PatternBelow are the pros of Adapter Design Pattern:By creating an adapter, you can reuse existing code without needing to modify it. This promotes code reuse and helps maintain a cleaner architecture.By separating the issues of interface adaptation, the adapter pattern frees classes to concentrate on their main duties without having to deal with adaptation code that clogs their logic. Because you can simply switch out multiple adapters to support different interfaces without altering the underlying system.By separating your system from particular implementations, adapters make it simpler to swap out or modify parts without compromising the functionality of other parts. Cons of Adapter Design PatternBelow are the cons of Adapter Design Pattern:Introducing adapters can add a layer of complexity to your system. Having multiple adapters can make the code harder to navigate and understand.The additional layer of indirection may introduce slight performance overhead, especially if the adapter needs to perform complex transformations.If not managed properly, the use of adapters can lead to maintenance challenges. Keeping track of multiple adapters for various interfaces can become cumbersome.There’s a risk of overusing adapters for trivial changes, which can lead to unnecessary complexity. It's critical to assess whether an adapter is actually required in a particular circumstance. Only two interfaces can be translated by adapters; if you need to adjust to more than one interface, you might need a lot of different adapters, which could make the design even more difficult. When to use Adapter Design Pattern?Use adapter design pattern when:We need to connect systems or components that weren’t built to work together. The adapter allows these incompatible interfaces to communicate, making integration smoother.Many times, we have existing code or libraries that we want to use, but they don’t match our current system. The adapter helps us incorporate this old code without having to rewrite it.As projects grow, new components are frequently added. An adapter allows you to integrate these new pieces without affecting the existing code, keeping the system flexible and adaptable.By isolating the changes needed for compatibility in one place, the adapter makes it easier to maintain the code. This reduces the risk of bugs that might arise from changing multiple parts of the system.When not to use Adapter Design Pattern?Do not use adapter design pattern when:If the system is straightforward and all components are compatible, an adapter may be unnecessary.Adapters can introduce a slight overhead, which might be a concern in performance-sensitive environments.When there are no issues with interface compatibility, using an adapter can be redundant.For projects with a very short lifespan, the overhead of implementing an adapter might not be worth it. Adapter Design Pattern Visit Course Comment More infoAdvertise with us Next Article System Design Bootcamp - 20 System Design Concepts Every Engineer Must Know K kartik Improve Article Tags : Design Pattern System Design Similar Reads System Design Tutorial System Design is the process of designing the architecture, components, and interfaces for a system so that it meets the end-user requirements. This specifically designed System Design tutorial will help you to learn and master System Design concepts in the most efficient way, from the basics to the 4 min read System Design Bootcamp - 20 System Design Concepts Every Engineer Must Know We all know that System Design is the core concept behind the design of any distributed system. Therefore every person in the tech industry needs to have at least a basic understanding of what goes behind designing a System. With this intent, we have brought to you the ultimate System Design Intervi 15+ min read What is System DesignWhat is System Design? A Comprehensive Guide to System Architecture and Design PrinciplesSystem Design is the process of defining the architecture, components, modules, interfaces, and data for a system to satisfy specified requirements. It involves translating user requirements into a detailed blueprint that guides the implementation phase. The goal is to create a well-organized and ef 11 min read System Design Life Cycle | SDLC (Design)System Design Life Cycle is defined as the complete journey of a System from planning to deployment. The System Design Life Cycle is divided into 7 Phases or Stages, which are:1. Planning Stage 2. Feasibility Study Stage 3. System Design Stage 4. Implementation Stage 5. Testing Stage 6. Deployment S 7 min read What are the components of System Design?The process of specifying a computer system's architecture, components, modules, interfaces, and data is known as system design. It involves looking at the system's requirements, determining its assumptions and limitations, and defining its high-level structure and components. The primary elements o 10 min read Goals and Objectives of System DesignThe objective of system design is to create a plan for a software or hardware system that meets the needs and requirements of a customer or user. This plan typically includes detailed specifications for the system, including its architecture, components, and interfaces. System design is an important 5 min read Why is it Important to Learn System Design?System design is an important skill in the tech industry, especially for freshers aiming to grow. Top MNCs like Google and Amazon emphasize system design during interviews, with 40% of recruiters prioritizing it. Beyond interviews, it helps in the development of scalable and effective solutions to a 6 min read Important Key Concepts and Terminologies â Learn System DesignSystem Design is the core concept behind the design of any distributed systems. System Design is defined as a process of creating an architecture for different components, interfaces, and modules of the system and providing corresponding data helpful in implementing such elements in systems. In this 9 min read Advantages of System DesignSystem Design is the process of designing the architecture, components, and interfaces for a system so that it meets the end-user requirements. System Design for tech interviews is something that canât be ignored! Almost every IT giant whether it be Facebook, Amazon, Google, Apple or any other asks 4 min read System Design FundamentalsAnalysis of Monolithic and Distributed Systems - Learn System DesignSystem analysis is the process of gathering the requirements of the system prior to the designing system in order to study the design of our system better so as to decompose the components to work efficiently so that they interact better which is very crucial for our systems. System design is a syst 10 min read What is Requirements Gathering Process in System Design?The first and most essential stage in system design is requirements collecting. It identifies and documents the needs of stakeholders to guide developers during the building process. This step makes sure the final system meets expectations by defining project goals and deliverables. We will explore 7 min read Differences between System Analysis and System DesignSystem Analysis and System Design are two stages of the software development life cycle. System Analysis is a process of collecting and analyzing the requirements of the system whereas System Design is a process of creating a design for the system to meet the requirements. Both are important stages 4 min read Horizontal and Vertical Scaling | System DesignIn system design, scaling is crucial for managing increased loads. This article explores horizontal and vertical scaling, detailing their differences. Understanding these approaches helps organizations make informed decisions for optimizing performance and ensuring scalability as their needs evolveH 8 min read Capacity Estimation in Systems DesignCapacity Estimation in Systems Design explores predicting how much load a system can handle. Imagine planning a party where you need to estimate how many guests your space can accommodate comfortably without things getting chaotic. Similarly, in technology, like websites or networks, we must estimat 10 min read Object-Oriented Analysis and Design(OOAD)Object-Oriented Analysis and Design (OOAD) is a way to design software by thinking of everything as objects similar to real-life things. In OOAD, we first understand what the system needs to do, then identify key objects, and finally decide how these objects will work together. This approach helps m 6 min read How to Answer a System Design Interview Problem/Question?System design interviews are crucial for software engineering roles, especially senior positions. These interviews assess your ability to architect scalable, efficient systems. Unlike coding interviews, they focus on overall design, problem-solving, and communication skills. You need to understand r 5 min read Functional vs. Non Functional RequirementsRequirements analysis is an essential process that enables the success of a system or software project to be assessed. Requirements are generally split into two types: Functional and Non-functional requirements. functional requirements define the specific behavior or functions of a system. In contra 6 min read Communication Protocols in System DesignModern distributed systems rely heavily on communication protocols for both design and operation. They facilitate smooth coordination and communication by defining the norms and guidelines for message exchange between various components. Building scalable, dependable, and effective systems requires 6 min read Web Server, Proxies and their role in Designing SystemsIn system design, web servers and proxies are crucial components that facilitate seamless user-application communication. Web pages, images, or data are delivered by a web server in response to requests from clients, like browsers. A proxy, on the other hand, acts as a mediator between clients and s 9 min read Scalability in System DesignWhat is Scalability and How to achieve it?The ability of a system to accommodate a growing load or demand without compromising performance is referred to as scalability. Scalability guarantees that systems can adjust without difficulty, whether a website's user base is growing or a corporation is extending its operations. Using distributed 11 min read Which Scalability approach is right for our Application? - System DesignDesigning a system that can manage growth requires selecting the right scaling strategy. To help you in selecting the best scaling strategy for your application, we will examine the various approaches, including vertical and horizontal scaling, in this post. In order to maintain performance and depe 6 min read Primary Bottlenecks that Hurt the Scalability of an Application - System DesignScalability is crucial for designing systems that can handle growing user demands. However, certain bottlenecks can slow down or even break an application's ability to scale. These bottlenecks can occur in various parts of a system. The first step in creating scalable and effective systems is to und 5 min read Databases in Designing SystemsComplete Guide to Database Design - System DesignDatabase design is key to building fast and reliable systems. It involves organizing data to ensure performance, consistency, and scalability while meeting application needs. From choosing the right database type to structuring data efficiently, good design plays a crucial role in system success. Th 11 min read SQL vs. NoSQL - Which Database to Choose in System Design?When designing a system, one of the most critical system design choices you will face is choosing the proper database management system (DBMS). The choice among SQL vs. NoSQL databases can drastically impact your system's overall performance, scalability, and usual success. This is why we have broug 7 min read File and Database Storage Systems in System DesignFile and database storage systems are important to the effective management and arrangement of data in system design. These systems offer a structure for data organization, retrieval, and storage in applications while guaranteeing data accessibility and integrity. Database systems provide structured 4 min read Block, Object, and File Storage in System DesignStorage is a key part of system design, and understanding the types of storage can help you build efficient systems. Block, object, and file storage are three common methods, each suited for specific use cases. Block storage is like building blocks for structured data, object storage handles large, 6 min read Database Sharding - System DesignDatabase sharding is a technique for horizontal scaling of databases, where the data is split across multiple database instances, or shards, to improve performance and reduce the impact of large amounts of data on a single database.Table of ContentWhat is Sharding?Methods of ShardingKey Based Shardi 9 min read Database Replication in System DesignDatabase replication is essential to system design, particularly when it comes to guaranteeing data scalability, availability, and reliability. It involves building and keeping several copies of a database on various servers to improve fault tolerance and performance.Table of ContentWhat is Database 7 min read High Level Design(HLD)What is High Level Design? â Learn System DesignHLD plays a significant role in developing scalable applications, as well as proper planning and organization. High-level design serves as the blueprint for the system's architecture, providing a comprehensive view of how components interact and function together. This high-level perspective is impo 9 min read Availability in System DesignIn system design, availability refers to the proportion of time that a system or service is operational and accessible for use. It is a critical aspect of designing reliable and resilient systems, especially in the context of online services, websites, cloud-based applications, and other mission-cri 6 min read Consistency in System DesignConsistency in system design refers to the property of ensuring that all nodes in a distributed system have the same view of the data at any given point in time, despite possible concurrent operations and network delays. In simpler terms, it means that when multiple clients access or modify the same 8 min read Reliability in System DesignReliability is crucial in system design, ensuring consistent performance and minimal failures. The reliability of a device is considered high if it has repeatedly performed its function with success and low if it has tended to fail in repeated trials. The reliability of a system is defined as the pr 5 min read CAP Theorem in System DesignThe CAP Theorem explains the trade-offs in distributed systems. It states that a system can only guarantee two of three properties: Consistency, Availability, and Partition Tolerance. This means no system can do it all, so designers must make smart choices based on their needs. This article explores 8 min read What is API Gateway | System Design?An API Gateway is a key component in system design, particularly in microservices architectures and modern web applications. It serves as a centralized entry point for managing and routing requests from clients to the appropriate microservices or backend services within a system.Table of ContentWhat 9 min read What is Content Delivery Network(CDN) in System DesignThese days, user experience and website speed are crucial. Content Delivery Networks (CDNs) are useful in this situation. It promotes the faster distribution of web content to users worldwide. In this article, you will understand the concept of CDNs in system design, exploring their importance, func 8 min read What is Load Balancer & How Load Balancing works?A load balancer is a crucial component in system design that distributes incoming network traffic across multiple servers. Its main purpose is to ensure that no single server is overburdened with too many requests, which helps improve the performance, reliability, and availability of applications.Ta 9 min read Caching - System Design ConceptCaching is a system design concept that involves storing frequently accessed data in a location that is easily and quickly accessible. The purpose of caching is to improve the performance and efficiency of a system by reducing the amount of time it takes to access frequently accessed data.Table of C 10 min read Communication Protocols in System DesignModern distributed systems rely heavily on communication protocols for both design and operation. They facilitate smooth coordination and communication by defining the norms and guidelines for message exchange between various components. Building scalable, dependable, and effective systems requires 6 min read Activity Diagrams - Unified Modeling Language (UML)Activity diagrams are an essential part of the Unified Modeling Language (UML) that help visualize workflows, processes, or activities within a system. They depict how different actions are connected and how a system moves from one state to another. By offering a clear picture of both simple and com 10 min read Message Queues - System DesignMessage queues enable communication between various system components, which makes them crucial to system architecture. Because they serve as buffers, messages can be sent and received asynchronously, enabling systems to function normally even if certain components are temporarily or slowly unavaila 9 min read Low Level Design(LLD)What is Low Level Design or LLD?Low-Level Design (LLD) plays a crucial role in software development, transforming high-level abstract concepts into detailed, actionable components that developers can use to build the system. In simple terms, LLD is the blueprint that guides developers on how to implement specific components of a s 7 min read Difference between Authentication and Authorization in LLD - System DesignTwo fundamental ideas in system design, particularly in low-level design (LLD), are authentication and authorization. While authorization establishes what resources or actions a user is permitted to access, authentication confirms a person's identity. Both are essential for building secure systems b 4 min read Performance Optimization Techniques for System DesignThe ability to design systems that are not only functional but also optimized for performance and scalability is essential. As systems grow in complexity, the need for effective optimization techniques becomes increasingly critical. Here we will explore various strategies and best practices for opti 13 min read Object-Oriented Analysis and Design(OOAD)Object-Oriented Analysis and Design (OOAD) is a way to design software by thinking of everything as objects similar to real-life things. In OOAD, we first understand what the system needs to do, then identify key objects, and finally decide how these objects will work together. This approach helps m 6 min read Data Structures and Algorithms for System DesignSystem design relies on Data Structures and Algorithms (DSA) to provide scalable and effective solutions. They assist engineers with data organization, storage, and processing so they can efficiently address real-world issues. In system design, understanding DSA concepts like arrays, trees, graphs, 6 min read Containerization Architecture in System DesignIn system design, containerization architecture describes the process of encapsulating an application and its dependencies into a portable, lightweight container that is easily deployable in a variety of computing environments. Because it makes the process of developing, deploying, and scaling appli 10 min read Introduction to Modularity and Interfaces In System DesignIn software design, modularity means breaking down big problems into smaller, more manageable parts. Interfaces are like bridges that connect these parts together. This article explains how using modularity and clear interfaces makes it easier to build and maintain software, with tips for making sys 9 min read Unified Modeling Language (UML) DiagramsUnified Modeling Language (UML) is a general-purpose modeling language. The main aim of UML is to define a standard way to visualize the way a system has been designed. It is quite similar to blueprints used in other fields of engineering. UML is not a programming language, it is rather a visual lan 14 min read Data Partitioning Techniques in System DesignUsing data partitioning techniques, a huge dataset can be divided into smaller, easier-to-manage portions. These techniques are applied in a variety of fields, including distributed systems, parallel computing, and database administration. Data Partitioning Techniques in System DesignTable of Conten 9 min read How to Prepare for Low-Level Design Interviews?Low-Level Design (LLD) interviews are crucial for many tech roles, especially for software developers and engineers. These interviews test your ability to design detailed components and interactions within a system, ensuring that you can translate high-level requirements into concrete implementation 4 min read Essential Security Measures in System DesignIn today's digitally advanced and Interconnected technology-driven worlds, ensuring the security of the systems is a top-notch priority. This article will deep into the aspects of why it is necessary to build secure systems and maintain them. With various threats like cyberattacks, Data Breaches, an 12 min read Design PatternsSoftware Design Patterns TutorialSoftware design patterns are important tools developers, providing proven solutions to common problems encountered during software development. This article will act as tutorial to help you understand the concept of design patterns. Developers can create more robust, maintainable, and scalable softw 9 min read Creational Design PatternsCreational Design Patterns focus on the process of object creation or problems related to object creation. They help in making a system independent of how its objects are created, composed, and represented. Creational patterns give a lot of flexibility in what gets created, who creates it, and how i 4 min read Structural Design PatternsStructural Design Patterns are solutions in software design that focus on how classes and objects are organized to form larger, functional structures. These patterns help developers simplify relationships between objects, making code more efficient, flexible, and easy to maintain. By using structura 7 min read Behavioral Design PatternsBehavioral design patterns are a category of design patterns that focus on the interactions and communication between objects. They help define how objects collaborate and distribute responsibility among them, making it easier to manage complex control flow and communication in a system. Table of Co 5 min read Design Patterns Cheat Sheet - When to Use Which Design Pattern?In system design, selecting the right design pattern is related to choosing the right tool for the job. It's essential for crafting scalable, maintainable, and efficient systems. Yet, among a lot of options, the decision can be difficult. This Design Patterns Cheat Sheet serves as a guide, helping y 7 min read Interview Guide for System DesignHow to Crack System Design Interview Round?In the System Design Interview round, You will have to give a clear explanation about designing large scalable distributed systems to the interviewer. This round may be challenging and complex for you because you are supposed to cover all the topics and tradeoffs within this limited time frame, whic 9 min read System Design Interview Questions and Answers [2025]In the hiring procedure, system design interviews play a significant role for many tech businesses, particularly those that develop large, reliable software systems. In order to satisfy requirements like scalability, reliability, performance, and maintainability, an extensive plan for the system's a 7 min read Most Commonly Asked System Design Interview Problems/QuestionsThis System Design Interview Guide will provide the most commonly asked system design interview questions and equip you with the knowledge and techniques needed to design, build, and scale your robust applications, for professionals and newbiesBelow are a list of most commonly asked interview proble 1 min read 5 Common System Design Concepts for Interview PreparationIn the software engineering interview process system design round has become a standard part of the interview. The main purpose of this round is to check the ability of a candidate to build a complex and large-scale system. Due to the lack of experience in building a large-scale system a lot of engi 12 min read 5 Tips to Crack Low-Level System Design InterviewsCracking low-level system design interviews can be challenging, but with the right approach, you can master them. This article provides five essential tips to help you succeed. These tips will guide you through the preparation process. Learn how to break down complex problems, communicate effectivel 6 min read Like