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Abstract. Various relationships involving the polygonal (or figurate) numbers are investi-
gated. Several summation formulas for the general case as well as examples of specific types
of polygonal numbers are obtained.

1. Introduction

The kth polygonal number of rank r is given by [2, 14, 21]

P
(r)
k

=
k[(r − 2)k − (r − 4)]

2
. (1.1)

Examples will be obtained for sums of the following polygonal numbers (listed with their
respective OEIS classification numbers [10]): pentagonal: A00326 [20], hexagonal: A000384
[17], heptagonal: A000566 [16], octagonal: A000567 [19], and nonagonal: A001106 [18]. The
summation formulas for powers of positive integers will be needed and can be found in various
sources [6, 9, 11].

Before presenting the summation formulas we note the following interesting observations
about polygonal numbers.

Proposition 1.1. The polygonal numbers satisfy the recurrence relation

yk+2 − 2yk+1 + yk = r − 2.

Proof. Using the standard technique for solving recurrence relations with constant coefficients
[13], with initial conditions, y1 = 1 and y2 = r in yk = C1 + C2k +Bk2 yields

yk = 0 +
1

2
(4− r)k +

1

2
(r − 2)k2 =

1

2
k [(r − 2)k − (r − 4)]

which is (1.1). �

Proposition 1.2. If n ≥ 3 then
n
∑

k=0

(

n
k

)

(−1)n+kP
(r)
n+k

= 0.

Proof. Using Euler’s finite difference theorem, [6, 11],

n
∑

k=0

(

n

k

)

(−1)n+kkj =

{

0, if 0 ≤ j < n;

(−1)nn!, if j = n,
(1.2)

it follows that
∑n

k=0

(

n
k

)

(−1)n+kP
(r)
n+k is given by

n
∑

k=0

(

n

k

)

(−1)n+k
[

(r − 2)(n2 + 2nk + k2)− (r − 4)(n + k)
]

,
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which yields

[

(r − 2)n2 − (r − 4)n
]

n
∑

k=0

(

n

k

)

(−1)n+kk0 + [2(r − 2)n − (r − 4)]

×

n
∑

k=0

(

n

k

)

(−1)n+kk1 + (r − 2)

n
∑

k=0

(

n

k

)

(−1)n+kk2 = 0.

�

Additional formulas, identities, and relationships can be found in [4] and the references cited
there.

We begin by presenting some general polygonal number summation formulas.

2. Summation Formulas for Polygonal Numbers

Using (1.1) and the special cases for sums of powers of integers [6, 9, 11], the sum of the
first n polygonal numbers is given by

n
∑

k=1

P
(r)
k

=
n(n+ 1) [(r − 2)n+ 5− r)]

6
. (2.1)

The proof of (2.1) is routine but since it very simply illustrates how the proofs of the more
complicated cases (which will not be presented due to their length) proceed, it is included
here.

Proof.

n
∑

k=1

P
(r)
k =

r − 2

2

n
∑

k=0

k2 −
r − 4

2

n
∑

k=0

k =
n(n+ 1)[(r − 2)(2n + 1)− 3(r − 4)]

12

=
n(n+ 1)[(r − 2)n+ 5− r]

6
.

�

Again, from (1.1) it follows that

(P
(r)
k )2 =

(r − 2)2k4 − 2(r − 2)(r − 4)k3 + (r − 4)2k2

4
.

Hence,
n
∑

k=1

(P
(r)
k

)2 =
n(n+ 1)

60

[

3(r − 2)3n3 − 3(r − 2)(r − 7)n2 − (2r2 − 3r − 22)n + 2(r2 − 9r + 19)
]

.

(2.2)
Next we consider the general case for powers of the polygonal numbers. The general formula

for sums of powers of consecutive integers is given in terms of the Bernoulli numbers, Bi

[1, 6, 7, 11, 12, 15]:

n−1
∑

k=1

km =
(n+B)m+1 −Bm+1

m+ 1

=
nm+1 +

(

m+1
1

)

nmB + · · ·+
(

m+1
m

)

nBm

m+ 1
, (2.3)
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where the symbolic operator, Bi is replaced by the Bernoulli number, Bi [12]. Note that

B1 =
−1

2
, B2i+1 = 0, for i ≥ 1; and B2i ∈

{

1,
1

6
,
−1

30
,
1

42
, . . .

}

for i ≥ 0.

To obtain the sum of the general powers of polygonal numbers, first note that

(P
(r)
k )m =

km [(r − 2)k − (r − 4)]m

2m

=

(

k

2

)m m
∑

j=0

(

m

j

)

(−1)j(r − 2)m−j(r − 4)jkm−j . (2.4)

Thus,

n
∑

k=1

(P
(r)
k )m =

n
∑

k=1

(

k

2

)m m
∑

j=0

(

m

j

)

(−1)j(r − 2)m−j(r − 4)jkm−j

=
1

2m

m
∑

j=0

(

m

j

)

(−1)j(r − 2)m−j(r − 4)j

2m+ 1− j

×

2m+1−j
∑

i=0

(

2m+ 1− j

i

)

(n+ 1)2m+1−j−iBi.

(2.5)

Next from (1.1)

P
(r)
mk+j =

(mk + j) [(r − 2)(mk + j) − (r − 4)]

2
. (2.6)

So it follows that

n
∑

k=1

P
(r)
mk+j =

(r − 2)m2

6
n3 +

(r − 2)m2 + 2(r − 2)mj − (r − 4)m

4
n2

+
(r − 2)m2 + 6(r − 2)mj + 6(r − 2)j2 − 3(r − 4)m− 6(r − 4)j

12
n.

(2.7)

In the interest of brevity, next we let

A = (r − 2)2,

B = 2(r − 2) [(r − 2)(M +N)− (r − 4)] ,

C = (r − 2)2(M2 + 4MN +N2)− 3(r − 2)(r − 4)(M +N) + (r − 4)2,

D = 2(r − 2)2MN(M +N)− (r − 2)(r − 4)(M2 + 4MN +N2) + (r − 4)2(M +N), and

E = (r − 2)2M2N2 − (r − 2)(r − 4)MN(M +N) + (r − 4)2MN.

Then,

P
(r)
k+M

P
(r)
k+N

=
Ak4 +Bk3 + Ck2 +Dk + E

4
. (2.8)
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Hence,

n
∑

k=1

P
(r)
k+MP

(r)
k+N =

n
∑

k=1

Ak4 +Bk3 + Ck2 +Dk + E

4

=
12An5 + 15(2A +B)n4 + 10(2A + 3B + 2C)n3

240
(2.9)

+
15(B + 2C + 2D)n2 + 2(−A+ 5C + 15D + 30E)n

240
.

We now present summation formulas for the pentagonal numbers.

3. Pentagonal Numbers

Setting r = 5 in (1.1) the pentagonal numbers are obtained

P
(5)
k = Pk =

k(3k − 1)

2
, {1, 5, 12, 22, 35, 51, . . .},

and from (2.1) the sum of the pentagonal numbers is found to be

n
∑

k=1

Pk =
n2(n+ 1)

2
, {1, 6, 18, 40, 75, 126, . . .}.

Since

P 2
k =

k2(9k2 − 6k + 1)

4
,

it follows that
n
∑

k=1

P 2
k =

n(n+ 1)(27n3 + 18n2 − 13n − 2)

60
, {1, 26, 170, 654, 1879, 4480, . . .}.

Also, (2.4) yields

Pm
k =

km(3k − 1)m

2m
=

(

k

2

)m m
∑

j=0

(

m

j

)

(−1)j3m−jkm−j ,

and so (2.5) yields

2m
n
∑

k=1

Pm
k =

n
∑

k=1

km(3k − 1)m =

n
∑

k=1

m
∑

j=0

(

m

j

)

(−1)j3m−jk2m−j .

Cubing (1.1) with r = 5 yields

P 3
k =

k3(27k3 − 27k2 + 9k − 1)

8
.

So,

n
∑

k=1

P 3
k =

n(n+ 1)(135n5 + 180n4 − 117n3 − 128n2 + 58n + 12)

280
, (3.1)

{1, 126, 1854, 12502, 55377, 188028, . . .}.

NOVEMBER 2014 339



THE FIBONACCI QUARTERLY

Using (2.5) is routine but cumbersome. So details of the proofs are omitted. However, to
illustrate the process, an abbreviated outline of the derivation of (3.1) is provided.
Outline of Proof for (3.1):

n
∑

k=1

P 3
k =

1

8

3
∑

j=0

(

3

j

)

(−1)j33−j

7− j

7
∑

i=0

(

7− j

i

)

(n+ 1)7−j−iBi

=
27

56

7
∑

i=0

(

7

i

)

(n+ 1)7−iBi −
9

16

6
∑

i=0

(

6

i

)

(n+ 1)6−iBi

+
9

40

5
∑

i=0

(

5

i

)

(n + 1)5−iBi −
1

32

4
∑

i=0

(

4

i

)

(n+ 1)4−iBi,

which yields (3.1). �

Next letting m = 2, j = 0, and j = −1 in (2.7) yields, respectively,

n
∑

k=1

P2k =
n(n+ 1)(4n + 1)

2
, {5, 27, 78, 170, 315, 525, . . .},

and
n
∑

k=1

P2k−1 =
n(4n2 − n− 1)

2
, {1, 13, 48, 118, 235, 411, . . .}.

Some identities for P3k+j were obtained in [8] but here (2.7) is applied. So if m = 3, j = 0,
and j = −1 then

n
∑

k=1

P3k =
3n(n+ 1)(3n + 1)

2
, {12, 63, 180, 390, 720, 1197, . . .}

and
n
∑

k=1

P3k−1 =
n(3n− 1)(3n + 2)

2
, {5, 40, 132, 308, 595, 1020, . . .}.

Setting r = 5, m = 3, and j = 2 in (2.7) yields

n
∑

k=1

P3k−2 =
n(9n2 − 6n− 1)

2
, {1, 23, 93, 238, 485, 861, . . .}.

Again, in the interest of brevity, we let

A = 18M + 18N − 6,

B = 9M2 + 36MN + 9N2 − 9M + 1,

C = 18M2N + 18MN2 − 3M2 − 12MN − 3N2 +M +N, and

D = 9M2N2 − 3M2N − 3MN2 +MN.

Then

Pk+MPk+N =
9k4 +Ak3 +Bk2 + Ck +D

4
.
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So,

n
∑

k=1

Pk+MPk+N =
9

20
n5 +

18 +A

16
n4 +

18 + 3A+ 2B

24
n3

+
A+ 2B + 2C

16
n2 +

−9 + 5B + 15C + 30D

120
n.

Hence,

PkPk+1 =
k(k + 1)(3k + 2)(3k − 1)

4

and

n
∑

k=1

PkPk+1 =
n(n+ 1)(54n3 + 171n2 + 109n − 34)

120
,

{5, 65, 329, 1099, 2884, 6454, . . .}.

We conclude with some further examples.

4. Summation Formulas for Additional Polygonal Numbers

Substituting the appropriate value of r in the general polygonal number formula (1.1) and
using the various identities developed in Section 2, the following identities are obtained.
Hexagonal Numbers

P
(6)
k = Hk = k(2k − 1), {1, 6, 15, 28, 45, 66, . . .}

n
∑

k=1

Hk =
n(n+ 1)(4n − 1)

6
, {1, 7, 22, 50, 95, 161, . . .}

n
∑

k=1

H2
k =

n(n+ 1)(24n3 + 6n2 − 16n+ 1)

30
, {1, 37, 262, 1046, 3071, 7427, . . .}

n
∑

k=0

HkHk+1 =
n(n+ 1)(4n3 + 11n2 + 4n− 4)

5
, {6, 96, 516, 1776, 4746, 10752, . . .}.

Heptagonal Numbers

P
(7)
k

= hk =
k(5k − 3)

2
, {1, 7, 18, 34, 55, 81, . . .}

n
∑

k=1

hk =
n(n+ 1)(5n − 2)

6
, {1, 8, 26, 60, 115, 196, . . .}

n
∑

k=1

h2k =
n(n+ 1)(15n3 − 11n+ 2)

12
, {1, 50, 374, 1530, 4555, 11116, . . .}

n
∑

k=0

hkhk+1 =
n(n+ 1)(30n3 + 75n2 + 13n− 34)

24
, {7, 133, 745, 2615, 7070, 16142, . . .}.

NOVEMBER 2014 341



THE FIBONACCI QUARTERLY

Octagonal Numbers

P
(8)
k = Ok = k(3k − 2), {1, 8, 21, 40, 65, 96, . . .}

n
∑

k=1

Ok =
n(n+ 1)(2n − 1)

2
, {1, 9, 30, 70, 135, 231, . . . }

n
∑

k=1

O2
k =

n(n+ 1)(54n3 − 9n2 − 41n + 11)

30
, {1, 65, 506, 2106, 6331, 15547, . . .}

n
∑

k=0

OkOk+1 =
n(n+ 1)(27n3 + 63n2 + 2n − 32)

15
, {8, 176, 1016, 3616, 9856, 22624, . . .}.

Nonagonal Numbers

P
(9)
k = Nk =

k(7k − 5)

2
, {1, 9, 24, 46, 75, 111, . . .}

n
∑

k=1

Nk =
n(n+ 1)(7n − 4)

6
, {1, 10, 34, 80, 155, 266, . . .}

n
∑

k=1

N2
k =

n(n+ 1)(147n3 − 42n2 − 113n + 38)

60
, {1, 82, 658, 2774, 8399, 20720, . . .}

n
∑

k=0

NkNk+1 =
n(n+ 1)(98n3 + 217n2 − 17n− 118)

40
, {9, 225, 1329, 4779, 13104, 30198, . . .}.

5. Concluding Remarks

More identities would undoubtedly arise using the above methods and the generating func-
tion for the polygonal numbers, P(r)(x) = (x[(r − 3)x + 1)])/(1 − x)3 [21] . Also the case
of infinite reciprocal sums has been addressed in general in [5] and specifically for some tri-
angle number patterns in [3]. However the authors believe that specific examples of sums of
reciprocals of various polygonal numbers as well as identities for finite sums are worth further
investigation.
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