PRODUCTS INVOLVING RECIPROCALS OF GIBONACCI POLYNOMIALS

THOMAS KOSHY

ABSTRACT. We explore finite and infinite products involving reciprocals of gibonacci polynomials, and their Pell counterparts.

1. INTRODUCTION

Extended gibonacci polynomials $z_n(x)$ are defined by the recurrence $z_{n+2}(x) = a(x)z_{n+1}(x) + b(x)z_n(x)$, where x is an arbitrary complex variable; a(x), b(x), $z_0(x)$, and $z_1(x)$ are arbitrary complex polynomials; and $n \ge 0$.

Suppose a(x) = x and b(x) = 1. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = f_n(x)$, the *n*th *Fibonacci polynomial*; and when $z_0(x) = 2$ and $z_1(x) = x$, $z_n(x) = l_n(x)$, the *n*th *Lucas polynomial*. Clearly, $f_n(1) = F_n$, the *n*th Fibonacci number; and $l_n(1) = L_n$, the *n*th Lucas number [1, 4, 6].

Pell polynomials $p_n(x)$ and Pell-Lucas polynomials $q_n(x)$ are defined by $p_n(x) = f_n(2x)$ and $q_n(x) = l_n(2x)$, respectively. In particular, the Pell numbers P_n and Pell-Lucas numbers Q_n are given by $P_n = p_n(1) = f_n(2)$ and $2Q_n = q_n(1) = l_n(2)$, respectively [4, 5].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is *no* ambiguity; so z_n will mean $z_n(x)$. In addition, we let $g_n = f_n$ or l_n , $b_n = p_n$ or q_n , $\Delta = \sqrt{x^2 + 4}$, $2\alpha(x) = x + \Delta$, $\gamma(x) = \alpha(2x)$, $\alpha = \alpha(1)$, and $\gamma = \gamma(1)$, and omit a lot of basic algebra. It follows from the *Binet-like formulas* in [4] that $\lim_{m \to \infty} \frac{g_{m+k}}{q_m} = \alpha^k(x)$,

and $\lim_{m \to \infty} \frac{b_{m+k}}{b_m} = \gamma^k(x).$

It follows from the Cassini-like identities [4]

$$f_{n+k}f_{n-k} - f_n^2 = (-1)^{n-k+1}f_k^2;$$

$$l_{n+k}l_{n-k} - l_n^2 = (-1)^{n-k}\Delta^2 f_k^2$$

that $F_{n-2}F_{n-1}F_{n+1}F_{n+2} = F_n^4 - 1$ and $L_{n-2}L_{n-1}L_{n+1}L_{n+2} = L_n^4 - 25$ [4]. They play an important role in our investigations.

2. PRODUCTS INVOLVING RECIPROCALS OF FIBONACCI POLYNOMIALS

We begin our explorations with products containing reciprocals of squares of odd-numbered Fibonacci polynomials.

Theorem 2.1.

$$\prod_{n=2}^{m} \left(1 + \frac{x^2}{f_{2n-1}^2} \right) = \frac{1}{x^2 + 1} \cdot \frac{f_{2m+1}}{f_{2m-1}}.$$
(2.1)

Proof. We will establish the formula using recursion [4]. Let A_m denote the left side of (2.1) and B_m denote the right of (2.1). Then,

$$\frac{B_m}{B_{m-1}} = \frac{f_{2m+1}f_{2m-3}}{f_{2m-1}^2}$$
$$= \frac{f_{2m-1}^2 + x^2}{f_{2m-1}^2}$$
$$= \frac{A_m}{A_{m-1}}.$$

This implies, $\frac{A_m}{B_m} = \frac{A_{m-1}}{B_{m-1}} = \dots = \frac{A_2}{B_2} = \frac{x^2 + 1}{x^2 + 1} = 1$. Consequently, $A_m = B_m$, as desired.

It then follows that

$$\prod_{n=2}^{m} \left(1 + \frac{1}{F_{2n-1}^2} \right) = \frac{F_{2m+1}}{2F_{2m-1}};$$

$$\prod_{n=2}^{\infty} \left(1 + \frac{x^2}{f_{2n-1}^2} \right) = \frac{\alpha^2(x)}{x^2 + 1};$$

$$\prod_{n=2}^{\infty} \left(1 + \frac{1}{F_{2n-1}^2} \right) = \frac{\alpha^2}{2}.$$
(2.2)

Formula (2.1) can be rewritten as

$$\prod_{n=2}^{m} \frac{f_{2n+1}f_{2n-3}}{f_{2n-1}^2} = \frac{1}{x^2+1} \cdot \frac{f_{2m+1}}{f_{2m-1}}$$

Next, we explore products involving reciprocals of squares of even-numbered Fibonacci polynomials.

Theorem 2.2.

$$\prod_{n=2}^{m} \left(1 - \frac{x^2}{f_{2n}^2} \right) = \frac{1}{x^2 + 2} \cdot \frac{f_{2m+2}}{f_{2m}}.$$
(2.3)

Proof. We will confirm the validity of this formula using recursion [4]. Let A_m denote the left side of (2.3) and B_m denote the right side of (2.3). Then,

$$\frac{B_m}{B_{m-1}} = \frac{f_{2m+2}f_{2m-2}}{f_{2m}^2}$$
$$= \frac{f_{2m}^2 - x^2}{f_{2m}^2}$$
$$= \frac{A_m}{A_{m-1}}.$$

This yields $\frac{A_m}{B_m} = \frac{A_{m-1}}{B_{m-1}} = \dots = \frac{A_2}{B_2} = \frac{f_4}{f_4} = 1$. So, $A_m = B_m$, as desired.

VOLUME 60, NUMBER 1

This theorem implies

$$\prod_{n=2}^{m} \left(1 - \frac{1}{F_{2n}^2} \right) = \frac{F_{2m+2}}{3F_{2m}};$$

$$\prod_{n=2}^{\infty} \left(1 - \frac{x^2}{f_{2n}^2} \right) = \frac{\alpha^2(x)}{x^2 + 2};$$

$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{F_{2n}^2} \right) = \frac{\alpha^2}{3}.$$
(2.4)

We can rewrite formula (2.3) as

$$\prod_{n=2}^{m} \frac{f_{2n-2}f_{2n+2}}{f_{2n}^2} = \frac{1}{x^2+2} \cdot \frac{f_{2m+2}}{f_{2m}}.$$

Next, we investigate products involving reciprocals of odd and even-numbered Fibonacci polynomial squares.

Theorem 2.3.

$$\prod_{n=2}^{m} \left(1 - \frac{1}{f_{2n-1}^2}\right) \left(1 + \frac{1}{f_{2n}^2}\right) = \frac{x}{x^2 + 1} \cdot \frac{f_{2m+1}}{f_{2m}}.$$
(2.5)

Proof. Again, we will invoke recursion [4] to establish this formula. Let A_m denote the left side of (2.5) and B_m denote the right side of (2.5). Then,

$$\frac{A_m}{A_{m-1}} = \frac{(f_{2m-1}^2 - 1)(f_{2m}^2 + 1)}{f_{2m-1}^2 f_{2m}^2}$$
$$= \frac{f_{2m} f_{2m-2} \cdot f_{2m+1} f_{2m-1}}{f_{2m-1}^2 f_{2m}^2}$$
$$= \frac{f_{2m+1} f_{2m-2}}{f_{2m} f_{2m-1}}$$
$$= \frac{B_m}{B_{m-1}}.$$

This implies, $\frac{A_m}{B_m} = \frac{A_{m-1}}{B_{m-1}} = \dots = \frac{A_2}{B_2} = 1$. So, $A_m = B_m$, as desired.

Consequently,

$$\prod_{n=2}^{m} \left(1 - \frac{1}{F_{2n-1}^{2}}\right) \left(1 + \frac{1}{F_{2n}^{2}}\right) = \frac{F_{2m+1}}{2F_{2m}};$$

$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{f_{2n-1}^{2}}\right) \left(1 + \frac{1}{f_{2n}^{2}}\right) = \frac{x}{x^{2} + 1}\alpha(x);$$

$$\prod_{n=2}^{\infty} \left(1 - \frac{1}{F_{2n-1}^{2}}\right) \left(1 + \frac{1}{F_{2n}^{2}}\right) = \frac{\alpha}{2},$$
(2.6)

as in [2].

An interesting byproduct: Formulas (2.2), (2.4), and (2.6) can be employed to extract a product containing reciprocals of the fourth powers of Fibonacci numbers. Multiplying these formulas,

FEBRUARY 2022

we get

$$\prod_{n=2}^{m} \left(1 - \frac{1}{F_{2n-1}^{4}}\right) \left(1 - \frac{1}{F_{2n}^{4}}\right) = \frac{F_{2m+1}}{2F_{2m-1}} \cdot \frac{F_{2m+2}}{3F_{2m}} \cdot \frac{F_{2m+1}}{2F_{2m}};$$

$$\prod_{n=3}^{2m} \left(1 - \frac{1}{F_{n}^{4}}\right) = \frac{F_{2m+2}F_{2m+1}^{2}}{12F_{2m}^{2}F_{2m-1}};$$

$$\prod_{n=3}^{\infty} \left(1 - \frac{1}{F_{n}^{4}}\right) = \frac{\alpha^{5}}{12},$$
(2.7)

as in [3, 7].

Using the Gelin-Cesàro identity $F_{n-2}F_{n-1}F_{n+1}F_{n+2} = F_n^4 - 1$ [4], we can rewrite formula (2.7) as

$$\prod_{n=3}^{\infty} \frac{F_{n-2}F_{n-1}F_{n+1}F_{n+2}}{F_n^4} = \frac{\alpha^5}{12},$$

as in [3].

2.1. Alternate Versions. Using the identity $l_n^2 - \Delta^2 f_n^2 = 4(-1)^n$ [4], we can express the left sides in formulas (2.1), (2.3), and (2.5) in terms of Lucas polynomials.

They yield

$$\begin{split} \prod_{n=2}^{m} \left(1 + \frac{\Delta^2 x^2}{l_{2n-1}^2 + 4} \right) &= \frac{1}{x^2 + 1} \cdot \frac{f_{2m+1}}{f_{2m-1}}; \\ \prod_{n=2}^{\infty} \left(1 + \frac{\Delta^2 x^2}{l_{2n-1}^2 + 4} \right) &= \frac{\alpha^2(x)}{x^2 + 1}; \\ \prod_{n=2}^{\infty} \left(1 + \frac{5}{L_{2n-1}^2 + 4} \right) &= \frac{\alpha^2}{2}. \end{split}$$
(2.8)
$$\begin{split} \prod_{n=2}^{m} \left(1 - \frac{\Delta^2 x^2}{l_{2n-1}^2 + 4} \right) &= \frac{1}{x^2 + 2} \cdot \frac{f_{2m+2}}{f_{2m}}; \\ \prod_{n=2}^{\infty} \left(1 - \frac{\Delta^2 x^2}{l_{2n-4}^2 - 4} \right) &= \frac{\alpha^2(x)}{x^2 + 2}; \\ \prod_{n=2}^{\infty} \left(1 - \frac{5}{L_{2n-1}^2 - 4} \right) &= \frac{\alpha^2}{3}. \end{aligned}$$
(2.9)
$$\begin{split} \prod_{n=2}^{m} \left(1 - \frac{\Delta^2}{l_{2n-1}^2 + 4} \right) \left(1 + \frac{\Delta^2}{l_{2n}^2 - 4} \right) &= \frac{x}{x^2 + 1} \cdot \frac{f_{2m+1}}{f_{2m}}; \\ \prod_{n=2}^{\infty} \left(1 - \frac{\Delta^2}{l_{2n-1}^2 + 4} \right) \left(1 + \frac{\Delta^2}{l_{2n}^2 - 4} \right) &= \frac{x\alpha(x)}{x^2 + 1}; \\ \prod_{n=2}^{\infty} \left(1 - \frac{5}{L_{2n-1}^2 + 4} \right) \left(1 + \frac{5}{L_{2n}^2 - 4} \right) &= \frac{\alpha}{2}. \end{aligned}$$
(2.10)

VOLUME 60, NUMBER 1

n=2

It then follows from equations (2.8), (2.9), and (2.10) that

$$\prod_{n=2}^{\infty} \left[1 - \frac{25}{(L_{2n-1}^2 + 4)^2} \right] \left[1 - \frac{25}{(L_{2n}^2 - 4)^2} \right] = \frac{\alpha^5}{12}.$$

3. Pell Versions

Using the relationship $p_n(x) = f_n(2x)$, we can find the Pell counterparts of formulas (2.1), (2.3), and (2.5).

It follows from formula (2.1) that

$$\prod_{n=2}^{m} \left(1 + \frac{4x^2}{p_{2n-1}^2} \right) = \frac{p_{2m+1}}{(4x^2 + 1)p_{2m-1}}.$$

This implies,

$$\prod_{n=2}^{m} \left(1 + \frac{4}{P_{2n-1}^2} \right) = \frac{P_{2m+1}}{5P_{2m-1}};$$

$$\prod_{n=2}^{\infty} \left(1 + \frac{4x^2}{p_{2n-1}^2} \right) = \frac{\gamma^2(x)}{4x^2 + 1};$$

$$\prod_{n=2}^{\infty} \left(1 + \frac{4}{P_{2n-1}^2} \right) = \frac{\gamma^2}{5}.$$

Formula (2.3) yields

$$\prod_{n=2}^{m} \left(1 - \frac{4x^2}{p_{2n}^2} \right) = \frac{1}{2(2x^2 + 1)} \cdot \frac{p_{2m+2}}{p_{2m}}.$$

Consequently,

$$\prod_{n=2}^{m} \left(1 - \frac{4}{P_{2n}^2} \right) = \frac{P_{2m+2}}{6P_{2m}};$$

$$\prod_{n=2}^{\infty} \left(1 - \frac{4x^2}{p_{2n}^2} \right) = \frac{\gamma^2(x)}{2(2x^2 + 1)};$$

$$\prod_{n=2}^{\infty} \left(1 - \frac{4}{P_{2n}^2} \right) = \frac{\gamma^2}{6}.$$

From formula (2.5), we get

$$\prod_{n=2}^{m} \left(1 - \frac{1}{p_{2n-1}^2}\right) \left(1 + \frac{1}{p_{2n}^2}\right) = \frac{2x}{4x^2 + 1} \cdot \frac{p_{2m+1}}{p_{2m}}.$$

This implies,

$$\begin{split} &\prod_{n=2}^{m} \left(1 - \frac{1}{P_{2n-1}^2}\right) \left(1 + \frac{1}{P_{2n}^2}\right) &= \frac{2}{5} \cdot \frac{P_{2m+1}}{P_{2m}}; \\ &\prod_{n=2}^{\infty} \left(1 - \frac{1}{p_{2n-1}^2}\right) \left(1 + \frac{1}{p_{2n}^2}\right) &= \frac{2x}{4x^2 + 1} \gamma(x); \\ &\prod_{n=2}^{\infty} \left(1 - \frac{1}{P_{2n-1}^2}\right) \left(1 + \frac{1}{P_{2n}^2}\right) &= \frac{2\gamma}{5}. \end{split}$$

Using the formula $q_n^2 - 4(x^2 + 1)p_n^2 = 4(-1)^n$ [5], we can extract the Pell-Lucas versions of formulas (2.1), (2.3), and (2.5). In the interest of brevity, we omit them.

4. PRODUCTS INVOLVING RECIPROCALS OF LUCAS POLYNOMIALS

We now explore the Lucas counterparts of formulas (2.1), (2.3), and (2.5). Again, we will employ recursion [4] to establish them.

Theorem 4.1.

$$\prod_{n=2}^{m} \left(1 - \frac{\Delta^2 x^2}{l_{2n-1}^2} \right) = \frac{x}{x^3 + 3x} \cdot \frac{l_{2m+1}}{l_{2m-1}}.$$
(4.1)

Proof. Let A_m denote the left side of (4.1) and B_m denote the right side of (4.1). Then,

$$\frac{B_m}{B_{m-1}} = \frac{l_{2m+1}l_{2m-3}}{l_{2m-1}^2}$$
$$= \frac{l_{2m-1}^2 - \Delta^2 x^2}{l_{2m-1}^2}$$
$$= \frac{A_m}{A_{m-1}}.$$

This implies,

$$\frac{A_m}{B_m} = \frac{A_{m-1}}{B_{m-1}} = \dots = \frac{A_2}{B_2} = \frac{l_5 l_1}{l_3^2} \cdot \frac{l_3^2}{x l_5} = 1.$$

Thus $A_m = B_m$, as expected.

Formula (4.1) yields

$$\prod_{n=2}^{m} \left(1 - \frac{5}{L_{2n-1}^2} \right) = \frac{L_{2m+1}}{4L_{2m-1}};$$

$$\prod_{n=2}^{\infty} \left(1 - \frac{\Delta^2 x^2}{l_{2n-1}^2} \right) = \frac{x}{x^3 + 3x} \alpha^2(x);$$

$$\prod_{n=2}^{\infty} \left(1 - \frac{5}{L_{2n-1}^2} \right) = \frac{\alpha^2}{4}.$$
(4.2)

Because $l_{2n+1}l_{2n-3} = l_{2n-1}^2 - \Delta^2 x^2$, we can rewrite formula (4.1) as

$$\prod_{n=2}^{m} \frac{l_{2n+1}l_{2n-3}}{l_{2n-1}^2} = \frac{x}{x^3 + 3x} \cdot \frac{l_{2m+1}}{l_{2m-1}}$$

Next, we investigate the Lucas version of Theorem 2.2.

VOLUME 60, NUMBER 1

Theorem 4.2.

$$\prod_{n=2}^{m} \left(1 + \frac{\Delta^2 x^2}{l_{2n}^2} \right) = \frac{x^2 + 2}{x^4 + 4x^2 + 2} \cdot \frac{l_{2m+2}}{l_{2m}}.$$
(4.3)

Proof. Letting A_m denote the left side of (4.3) and B_m denote the right side of (4.3), we get

$$\frac{B_m}{B_{m-1}} = \frac{l_{2m+2}l_{2m-2}}{l_{2m}^2}$$
$$= \frac{l_{2m}^2 + \Delta^2 x^2}{l_{2m}^2}$$
$$= \frac{A_m}{A_{m-1}}.$$

This implies, $\frac{A_m}{B_m} = \frac{A_{m-1}}{B_{m-1}} = \dots = \frac{A_2}{B_2} = \frac{l_6 l_2}{l_4^2} \cdot \frac{l_4 l_4}{l_2 l_6} = 1$. Consequently, $A_m = B_m$, as desired.

It follows from formula (4.3) that

$$\prod_{n=2}^{m} \left(1 + \frac{5}{L_{2n}^2} \right) = \frac{3}{7} \cdot \frac{L_{2m+1}}{L_{2m-1}};$$

$$\prod_{n=2}^{\infty} \left(1 + \frac{\Delta^2 x^2}{l_{2n}^2} \right) = \frac{x^2 + 2}{x^4 + 4x^2 + 2} \alpha^2(x);$$

$$\prod_{n=2}^{\infty} \left(1 + \frac{5}{L_{2n}^2} \right) = \frac{3\alpha^2}{7}.$$
(4.4)

Using the identity $l_{2n+2}l_{2n-2} = l_{2n}^2 + \Delta^2 x^2$, we can rewrite formula (4.3) as

$$\prod_{n=2}^{m} \frac{l_{2n+2}l_{2n-2}}{l_{2n}^2} = \frac{x^2+2}{x^4+4x^2+2} \cdot \frac{l_{2m+2}}{l_{2m}}.$$

Next, we present the Lucas version of Theorem 2.3.

Theorem 4.3.

$$\prod_{n=2}^{m} \left(1 + \frac{\Delta^2}{l_{2n-1}^2} \right) \left(1 - \frac{\Delta^2}{l_{2n}^2} \right) = \frac{x^2 + 2}{x^3 + 3x} \cdot \frac{l_{2m+1}}{l_{2m}}.$$
(4.5)

Proof. Again, letting A_m denote the left side of (4.5) and B_m denote the right side of (4.5), we have

$$\frac{A_m}{A_{m-1}} = \frac{(l_{2m-1}^2 + \Delta^2)(l_{2m}^2 - \Delta^2)}{l_{2m-1}^2 l_{2m}^2}$$
$$= \frac{l_{2m} l_{2m-2} \cdot l_{2m+1} l_{2m-1}}{l_{2m-1}^2 l_{2m}^2}$$
$$= \frac{l_{2m+1} l_{2m-2}}{l_{2m} l_{2m-1}}$$
$$= \frac{B_m}{B_{m-1}}.$$

This yields $\frac{A_m}{B_m} = \frac{A_{m-1}}{B_{m-1}} = \dots = \frac{A_2}{B_2} = \frac{l_5 l_3}{l_4^2} \cdot \frac{l_4 l_2}{l_3^2} \cdot \frac{l_3 l_4}{l_2 l_5} = 1$. Consequently, $A_m = B_m$, as desired.

Consequently,

$$\prod_{n=2}^{m} \left(1 + \frac{5}{L_{2n-1}^2} \right) \left(1 - \frac{5}{L_{2n}^2} \right) = \frac{3}{4} \cdot \frac{L_{2m+1}}{L_{2m}};$$

$$\prod_{n=2}^{\infty} \left(1 + \frac{\Delta^2}{l_{2n-1}^2} \right) \left(1 - \frac{\Delta^2}{l_{2n}^2} \right) = \frac{x^2 + 2}{x^3 + 3x} \alpha(x);$$

$$\prod_{n=2}^{\infty} \left(1 + \frac{5}{L_{2n-1}^2} \right) \left(1 - \frac{5}{L_{2n}^2} \right) = \frac{3\alpha}{4}.$$
(4.6)

Using the Cassini-like identity for Lucas polynomials, we can rewrite formula (4.5) as

$$\prod_{n=2}^{m} \frac{l_{2n-2}l_{2n-1}l_{2n}l_{2n+1}}{l_{2n-1}^2l_{2n}^2} = \frac{x^2+2}{x^3+3x} \cdot \frac{l_{2m+1}}{l_{2m-1}}.$$

Another interesting byproduct: Using equations (4.2), (4.4), and (4.6), we can extract a formula for the product involving reciprocals of the fourth powers of Lucas numbers. Multiplying these formulas, we get

$$\prod_{n=2}^{m} \left(1 - \frac{25}{L_{2n-1}^4}\right) \left(1 - \frac{25}{L_{2n}^4}\right) = \frac{L_{2m+1}}{4L_{2m-1}} \cdot \frac{3L_{2m+2}}{7L_{2m}} \cdot \frac{3L_{2m+1}}{4L_{2m}};$$

$$\prod_{n=3}^{2m} \left(1 - \frac{25}{L_n^4}\right) = \frac{9}{112} \cdot \frac{L_{2m+2}L_{2m+1}^2}{L_{2m}^2L_{2m-1}};$$

$$\prod_{n=3}^{\infty} \left(1 - \frac{25}{L_n^4}\right) = \frac{9}{112}\alpha^5.$$
(4.7)

Using the Gelin-Cesàro-like identity $L_{n-2}L_{n-1}L_{n+1}L_{n+2} = L_n^4 - 25$ [4], we can rewrite formula (4.7) as

$$\prod_{n=3}^{\infty} \frac{L_{n-2}L_{n-1}L_{n+1}L_{n+2}}{L_n^4} = \frac{9}{112}\alpha^5.$$

4.1. Alternate Versions. Using the identity $l_n^2 - \Delta^2 f_n^2 = 4(-1)^n$ [4], we can express formulas (4.1), (4.3), and (4.5) and their implications in terms of Fibonacci polynomials:

$$\prod_{n=2}^{m} \left(1 - \frac{\Delta^2 x^2}{\Delta^2 f_{2n-1}^2 - 4} \right) = \frac{x}{x^3 + 3x} \cdot \frac{l_{2m+1}}{l_{2m-1}};$$

$$\prod_{n=2}^{\infty} \left(1 - \frac{\Delta^2 x^2}{\Delta^2 f_{2n-1}^2 - 4} \right) = \frac{x\alpha^2(x)}{x^3 + 3x};$$

VOLUME 60, NUMBER 1

RECIPROCALS OF GIBONACCI POLYNOMIALS

$$\begin{split} \prod_{n=2}^{\infty} \left(1 - \frac{5}{5F_{2n-1}^2 - 4} \right) &= \frac{\alpha^2}{4}. \end{split} \tag{4.8} \\ \prod_{n=2}^{m} \left(1 + \frac{\Delta^2 x^2}{\Delta^2 f_{2n}^2 + 4} \right) &= \frac{x^2 + 2}{x^4 + 4x^2 + 2} \cdot \frac{l_{2m+2}}{l_{2m}}; \\ \prod_{n=2}^{\infty} \left(1 + \frac{\Delta^2 x^2}{\Delta^2 f_{2n}^2 + 4} \right) &= \frac{x^2 + 2}{x^4 + 4x^2 + 2} \alpha^2(x); \\ \prod_{n=2}^{\infty} \left(1 + \frac{5}{5F_{2n}^2 + 4} \right) &= \frac{3\alpha^2}{7}. \end{aligned} \tag{4.9} \\ \prod_{n=2}^{m} \left(1 + \frac{\Delta^2}{\Delta^2 f_{2n-1}^2 - 4} \right) \left(1 - \frac{\Delta^2}{\Delta^2 f_{2n}^2 + 4} \right) &= \frac{x^2 + 2}{x^3 + 3x} \cdot \frac{l_{2m+1}}{l_{2m}}; \\ \prod_{n=2}^{\infty} \left(1 + \frac{\Delta^2}{\Delta^2 f_{2n-1}^2 - 4} \right) \left(1 - \frac{\Delta^2}{\Delta^2 f_{2n}^2 + 4} \right) &= \frac{x^2 + 2}{x^3 + 3x} \alpha(x); \\ \prod_{n=2}^{\infty} \left(1 + \frac{5}{5F_{2n-1}^2 - 4} \right) \left(1 - \frac{5}{5F_{2n}^2 + 4} \right) &= \frac{3\alpha}{4}. \end{aligned} \tag{4.10}$$

It then follows from equations (4.8), (4.9), and (4.10) that

$$\prod_{n=2}^{\infty} \left[1 - \frac{25}{(5F_{2n-1}^2 - 4)^2} \right] \left[1 - \frac{25}{(5F_{2n}^2 + 4)^2} \right] = \frac{9}{112} \alpha^5.$$

Next, we find the Pell-Lucas consequences of formulas (4.1), (4.3), and (4.5).

4.2. Pell-Lucas Implications. Because $q_n(x) = l_n(2x)$ and $\gamma(x) = \alpha(2x)$, it follows from equations (4.1), (4.3), and (4.5) that

$$\begin{split} \prod_{n=2}^{m} \left[1 - \frac{16x^2(x^2+1)}{q_{2n-1}^2} \right] &= \frac{x}{4x^3+3x} \cdot \frac{q_{2m+1}}{q_{2m-1}};\\ \prod_{n=2}^{m} \left[1 + \frac{16x^2(x^2+1)}{q_{2n}^2} \right] &= \frac{2x^2+1}{8x^4+8x^2+1} \cdot \frac{q_{2m+2}}{q_{2m}};\\ \prod_{n=2}^{m} \left[1 + \frac{4(x^2+1)}{q_{2n-1}^2} \right] \left[1 - \frac{4(x^2+1)}{q_{2n}^2} \right] &= \frac{2x^2+1}{4x^3+3x} \cdot \frac{q_{2m+1}}{q_{2m}}, \end{split}$$

respectively.

It then follows that

m

 $\prod_{n=2}^{\infty}$

$$\begin{split} \prod_{n=2}^{m} \left(1 - \frac{8}{Q_{2n-1}^2} \right) &= \frac{1}{7} \cdot \frac{Q_{2m+1}}{Q_{2m-1}}; \\ \prod_{n=2}^{m} \left(1 + \frac{8}{Q_{2n}^2} \right) &= \frac{3}{17} \cdot \frac{Q_{2m+2}}{Q_{2m}}; \\ \prod_{n=2}^{m} \left(1 + \frac{2}{Q_{2n-1}^2} \right) \left(1 - \frac{2}{Q_{2n}^2} \right) &= \frac{3}{7} \cdot \frac{Q_{2m+1}}{Q_{2m}}, \end{split}$$

respectively. In addition, we have

$$\begin{split} \prod_{n=2}^{\infty} \left[1 - \frac{16x^2(x^2+1)}{q_{2n-1}^2} \right] &= \frac{x}{4x^3+3x} \gamma^2(x); \\ \prod_{n=2}^{\infty} \left[1 + \frac{16x^2(x^2+1)}{q_{2n}^2} \right] &= \frac{2x^2+1}{8x^4+8x^2+1} \gamma^2(x); \\ \prod_{n=2}^{\infty} \left[1 + \frac{4(x^2+1)}{q_{2n-1}^2} \right] \left[1 - \frac{4(x^2+1)}{q_{2n}^2} \right] &= \frac{2x^2+1}{4x^3+3x} \gamma(x). \end{split}$$

5. Acknowledgment

The author thanks the reviewer for a careful reading of the article, and for constructive suggestions and encouraging words.

References

- [1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407–420.
- [2] P. Davlianidze, Problem B-1264, The Fibonacci Quarterly, 58.1 (2020), 82.
- [3] S. Edwards, Solution to Problem B-1220, The Fibonacci Quarterly, 56.4 (2018), 372.
- [4] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.
- [5] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
- [6] T. Koshy, Polynomial extensions of the Lucas and Ginsburg Identities revisited, The Fibonacci Quarterly, 55.2 (2017), 147–151.
- [7] H. Ohtsuka, Problem B-1220, The Fibonacci Quarterly, 55.4 (2017), 368.

MSC2020: Primary 11B39, 11B83, 11C08

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701 *Email address*: tkoshy@emeriti.framingham.edu