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Abstract. We explore finite and infinite products involving reciprocals of gibonacci polyno-
mials, and their Pell counterparts.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 4, 6].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively. In particular, the Pell numbers Pn and Pell-Lucas numbers Qn

are given by Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively [4, 5].
In the interest of brevity, clarity, and convenience, we omit the argument in the functional

notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or ln,

bn = pn or qn, ∆ =
√
x2 + 4, 2α(x) = x+∆, γ(x) = α(2x), α = α(1), and γ = γ(1), and omit

a lot of basic algebra. It follows from the Binet-like formulas in [4] that lim
m→∞

gm+k

gm
= αk(x),

and lim
m→∞

bm+k

bm
= γk(x).

It follows from the Cassini-like identities [4]

fn+kfn−k − f2
n = (−1)n−k+1f2

k ;

ln+kln−k − l2n = (−1)n−k∆2f2
k

that Fn−2Fn−1Fn+1Fn+2 = F 4
n − 1 and Ln−2Ln−1Ln+1Ln+2 = L4

n − 25 [4]. They play an
important role in our investigations.

2. Products Involving Reciprocals of Fibonacci Polynomials

We begin our explorations with products containing reciprocals of squares of odd-numbered
Fibonacci polynomials.

Theorem 2.1.
m∏

n=2

(
1 +

x2

f2
2n−1

)
=

1

x2 + 1
· f2m+1

f2m−1
. (2.1)
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Proof. We will establish the formula using recursion [4]. Let Am denote the left side of (2.1)
and Bm denote the right side of (2.1). Then,

Bm

Bm−1
=

f2m+1f2m−3

f2
2m−1

=
f2
2m−1 + x2

f2
2m−1

=
Am

Am−1
.

This implies,
Am

Bm
=

Am−1

Bm−1
= · · · = A2

B2
=

x2 + 1

x2 + 1
= 1. Consequently, Am = Bm, as desired.

□

It then follows that

m∏
n=2

(
1 +

1

F 2
2n−1

)
=

F2m+1

2F2m−1
; (2.2)

∞∏
n=2

(
1 +

x2

f2
2n−1

)
=

α2(x)

x2 + 1
;

∞∏
n=2

(
1 +

1

F 2
2n−1

)
=

α2

2
.

Formula (2.1) can be rewritten as

m∏
n=2

f2n+1f2n−3

f2
2n−1

=
1

x2 + 1
· f2m+1

f2m−1
.

Next, we explore products involving reciprocals of squares of even-numbered Fibonacci
polynomials.

Theorem 2.2.
m∏

n=2

(
1− x2

f2
2n

)
=

1

x2 + 2
· f2m+2

f2m
. (2.3)

Proof. We will confirm the validity of this formula using recursion [4]. Let Am denote the left
side of (2.3) and Bm denote the right side of (2.3). Then,

Bm

Bm−1
=

f2m+2f2m−2

f2
2m

=
f2
2m − x2

f2
2m

=
Am

Am−1
.

This yields
Am

Bm
=

Am−1

Bm−1
= · · · = A2

B2
=

f4
f4

= 1. So, Am = Bm, as desired. □
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This theorem implies

m∏
n=2

(
1− 1

F 2
2n

)
=

F2m+2

3F2m
; (2.4)

∞∏
n=2

(
1− x2

f2
2n

)
=

α2(x)

x2 + 2
;

∞∏
n=2

(
1− 1

F 2
2n

)
=

α2

3
.

We can rewrite formula (2.3) as

m∏
n=2

f2n−2f2n+2

f2
2n

=
1

x2 + 2
· f2m+2

f2m
.

Next, we investigate products involving reciprocals of odd and even-numbered Fibonacci
polynomial squares.

Theorem 2.3.
m∏

n=2

(
1− 1

f2
2n−1

)(
1 +

1

f2
2n

)
=

x

x2 + 1
· f2m+1

f2m
. (2.5)

Proof. Again, we will invoke recursion [4] to establish this formula. Let Am denote the left
side of (2.5) and Bm denote the right side of (2.5). Then,

Am

Am−1
=

(f2
2m−1 − 1)(f2

2m + 1)

f2
2m−1f

2
2m

=
f2mf2m−2 · f2m+1f2m−1

f2
2m−1f

2
2m

=
f2m+1f2m−2

f2mf2m−1

=
Bm

Bm−1
.

This implies,
Am

Bm
=

Am−1

Bm−1
= · · · = A2

B2
= 1. So, Am = Bm, as desired. □

Consequently,

m∏
n=2

(
1− 1

F 2
2n−1

)(
1 +

1

F 2
2n

)
=

F2m+1

2F2m
; (2.6)

∞∏
n=2

(
1− 1

f2
2n−1

)(
1 +

1

f2
2n

)
=

x

x2 + 1
α(x);

∞∏
n=2

(
1− 1

F 2
2n−1

)(
1 +

1

F 2
2n

)
=

α

2
,

as in [2].
An interesting byproduct : Formulas (2.2), (2.4), and (2.6) can be employed to extract a product
containing reciprocals of the fourth powers of Fibonacci numbers. Multiplying these formulas,
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we get

m∏
n=2

(
1− 1

F 4
2n−1

)(
1− 1

F 4
2n

)
=

F2m+1

2F2m−1
· F2m+2

3F2m
· F2m+1

2F2m
;

2m∏
n=3

(
1− 1

F 4
n

)
=

F2m+2F
2
2m+1

12F 2
2mF2m−1

;

∞∏
n=3

(
1− 1

F 4
n

)
=

α5

12
, (2.7)

as in [3, 7].
Using the Gelin-Cesàro identity Fn−2Fn−1Fn+1Fn+2 = F 4

n − 1 [4], we can rewrite formula
(2.7) as

∞∏
n=3

Fn−2Fn−1Fn+1Fn+2

F 4
n

=
α5

12
,

as in [3].

2.1. Alternate Versions. Using the identity l2n −∆2f2
n = 4(−1)n [4], we can express the left

sides in formulas (2.1), (2.3), and (2.5) in terms of Lucas polynomials.
They yield

m∏
n=2

(
1 +

∆2x2

l22n−1 + 4

)
=

1

x2 + 1
· f2m+1

f2m−1
;

∞∏
n=2

(
1 +

∆2x2

l22n−1 + 4

)
=

α2(x)

x2 + 1
;

∞∏
n=2

(
1 +

5

L2
2n−1 + 4

)
=

α2

2
. (2.8)

m∏
n=2

(
1− ∆2x2

l22n − 4

)
=

1

x2 + 2
· f2m+2

f2m
;

∞∏
n=2

(
1− ∆2x2

l22n − 4

)
=

α2(x)

x2 + 2
;

∞∏
n=2

(
1− 5

L2
2n − 4

)
=

α2

3
. (2.9)

m∏
n=2

(
1− ∆2

l22n−1 + 4

)(
1 +

∆2

l22n − 4

)
=

x

x2 + 1
· f2m+1

f2m
;

∞∏
n=2

(
1− ∆2

l22n−1 + 4

)(
1 +

∆2

l22n − 4

)
=

xα(x)

x2 + 1
;

∞∏
n=2

(
1− 5

L2
2n−1 + 4

)(
1 +

5

L2
2n − 4

)
=

α

2
. (2.10)
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It then follows from equations (2.8), (2.9), and (2.10) that

∞∏
n=2

[
1− 25

(L2
2n−1 + 4)2

] [
1− 25

(L2
2n − 4)2

]
=

α5

12
.

3. Pell Versions

Using the relationship pn(x) = fn(2x), we can find the Pell counterparts of formulas (2.1),
(2.3), and (2.5).

It follows from formula (2.1) that

m∏
n=2

(
1 +

4x2

p22n−1

)
=

p2m+1

(4x2 + 1)p2m−1
.

This implies,

m∏
n=2

(
1 +

4

P 2
2n−1

)
=

P2m+1

5P2m−1
;

∞∏
n=2

(
1 +

4x2

p22n−1

)
=

γ2(x)

4x2 + 1
;

∞∏
n=2

(
1 +

4

P 2
2n−1

)
=

γ2

5
.

Formula (2.3) yields

m∏
n=2

(
1− 4x2

p22n

)
=

1

2(2x2 + 1)
· p2m+2

p2m
.

Consequently,

m∏
n=2

(
1− 4

P 2
2n

)
=

P2m+2

6P2m
;

∞∏
n=2

(
1− 4x2

p22n

)
=

γ2(x)

2(2x2 + 1)
;

∞∏
n=2

(
1− 4

P 2
2n

)
=

γ2

6
.

From formula (2.5), we get

m∏
n=2

(
1− 1

p22n−1

)(
1 +

1

p22n

)
=

2x

4x2 + 1
· p2m+1

p2m
.
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This implies,
m∏

n=2

(
1− 1

P 2
2n−1

)(
1 +

1

P 2
2n

)
=

2

5
· P2m+1

P2m
;

∞∏
n=2

(
1− 1

p22n−1

)(
1 +

1

p22n

)
=

2x

4x2 + 1
γ(x);

∞∏
n=2

(
1− 1

P 2
2n−1

)(
1 +

1

P 2
2n

)
=

2γ

5
.

Using the formula q2n − 4(x2 + 1)p2n = 4(−1)n [5], we can extract the Pell-Lucas versions of
formulas (2.1), (2.3), and (2.5). In the interest of brevity, we omit them.

4. Products Involving Reciprocals of Lucas Polynomials

We now explore the Lucas counterparts of formulas (2.1), (2.3), and (2.5). Again, we will
employ recursion [4] to establish them.

Theorem 4.1.
m∏

n=2

(
1− ∆2x2

l22n−1

)
=

x

x3 + 3x
· l2m+1

l2m−1
. (4.1)

Proof. Let Am denote the left side of (4.1) and Bm denote the right side of (4.1). Then,

Bm

Bm−1
=

l2m+1l2m−3

l22m−1

=
l22m−1 −∆2x2

l22m−1

=
Am

Am−1
.

This implies,
Am

Bm
=

Am−1

Bm−1
= · · · = A2

B2
=

l5l1
l23

· l23
xl5

= 1.

Thus Am = Bm, as expected. □

Formula (4.1) yields
m∏

n=2

(
1− 5

L2
2n−1

)
=

L2m+1

4L2m−1
; (4.2)

∞∏
n=2

(
1− ∆2x2

l22n−1

)
=

x

x3 + 3x
α2(x);

∞∏
n=2

(
1− 5

L2
2n−1

)
=

α2

4
.

Because l2n+1l2n−3 = l22n−1 −∆2x2, we can rewrite formula (4.1) as

m∏
n=2

l2n+1l2n−3

l22n−1

=
x

x3 + 3x
· l2m+1

l2m−1
.

Next, we investigate the Lucas version of Theorem 2.2.
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Theorem 4.2.
m∏

n=2

(
1 +

∆2x2

l22n

)
=

x2 + 2

x4 + 4x2 + 2
· l2m+2

l2m
. (4.3)

Proof. Letting Am denote the left side of (4.3) and Bm denote the right side of (4.3), we get

Bm

Bm−1
=

l2m+2l2m−2

l22m

=
l22m +∆2x2

l22m

=
Am

Am−1
.

This implies,
Am

Bm
=

Am−1

Bm−1
= · · · = A2

B2
=

l6l2
l24

· l4l4
l2l6

= 1. Consequently, Am = Bm, as desired.

□

It follows from formula (4.3) that

m∏
n=2

(
1 +

5

L2
2n

)
=

3

7
· L2m+1

L2m−1
; (4.4)

∞∏
n=2

(
1 +

∆2x2

l22n

)
=

x2 + 2

x4 + 4x2 + 2
α2(x);

∞∏
n=2

(
1 +

5

L2
2n

)
=

3α2

7
.

Using the identity l2n+2l2n−2 = l22n +∆2x2, we can rewrite formula (4.3) as

m∏
n=2

l2n+2l2n−2

l22n
=

x2 + 2

x4 + 4x2 + 2
· l2m+2

l2m
.

Next, we present the Lucas version of Theorem 2.3.

Theorem 4.3.
m∏

n=2

(
1 +

∆2

l22n−1

)(
1− ∆2

l22n

)
=

x2 + 2

x3 + 3x
· l2m+1

l2m
. (4.5)

Proof. Again, letting Am denote the left side of (4.5) and Bm denote the right side of (4.5),
we have

Am

Am−1
=

(l22m−1 +∆2)(l22m −∆2)

l22m−1l
2
2m

=
l2ml2m−2 · l2m+1l2m−1

l22m−1l
2
2m

=
l2m+1l2m−2

l2ml2m−1

=
Bm

Bm−1
.
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This yields
Am

Bm
=

Am−1

Bm−1
= · · · = A2

B2
=

l5l3
l24

· l4l2
l23

· l3l4
l2l5

= 1. Consequently, Am = Bm, as de-

sired. □

Consequently,

m∏
n=2

(
1 +

5

L2
2n−1

)(
1− 5

L2
2n

)
=

3

4
· L2m+1

L2m
; (4.6)

∞∏
n=2

(
1 +

∆2

l22n−1

)(
1− ∆2

l22n

)
=

x2 + 2

x3 + 3x
α(x);

∞∏
n=2

(
1 +

5

L2
2n−1

)(
1− 5

L2
2n

)
=

3α

4
.

Using the Cassini-like identity for Lucas polynomials, we can rewrite formula (4.5) as

m∏
n=2

l2n−2l2n−1l2nl2n+1

l22n−1l
2
2n

=
x2 + 2

x3 + 3x
· l2m+1

l2m−1
.

Another interesting byproduct : Using equations (4.2), (4.4), and (4.6), we can extract a formula
for the product involving reciprocals of the fourth powers of Lucas numbers. Multiplying these
formulas, we get

m∏
n=2

(
1− 25

L4
2n−1

)(
1− 25

L4
2n

)
=

L2m+1

4L2m−1
· 3L2m+2

7L2m
· 3L2m+1

4L2m
;

2m∏
n=3

(
1− 25

L4
n

)
=

9

112
·
L2m+2L

2
2m+1

L2
2mL2m−1

;

∞∏
n=3

(
1− 25

L4
n

)
=

9

112
α5. (4.7)

Using the Gelin-Cesàro-like identity Ln−2Ln−1Ln+1Ln+2 = L4
n − 25 [4], we can rewrite

formula (4.7) as

∞∏
n=3

Ln−2Ln−1Ln+1Ln+2

L4
n

=
9

112
α5.

4.1. Alternate Versions. Using the identity l2n−∆2f2
n = 4(−1)n [4], we can express formulas

(4.1), (4.3), and (4.5) and their implications in terms of Fibonacci polynomials:

m∏
n=2

(
1− ∆2x2

∆2f2
2n−1 − 4

)
=

x

x3 + 3x
· l2m+1

l2m−1
;

∞∏
n=2

(
1− ∆2x2

∆2f2
2n−1 − 4

)
=

xα2(x)

x3 + 3x
;
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∞∏
n=2

(
1− 5

5F 2
2n−1 − 4

)
=

α2

4
. (4.8)

m∏
n=2

(
1 +

∆2x2

∆2f2
2n + 4

)
=

x2 + 2

x4 + 4x2 + 2
· l2m+2

l2m
;

∞∏
n=2

(
1 +

∆2x2

∆2f2
2n + 4

)
=

x2 + 2

x4 + 4x2 + 2
α2(x);

∞∏
n=2

(
1 +

5

5F 2
2n + 4

)
=

3α2

7
. (4.9)

m∏
n=2

(
1 +

∆2

∆2f2
2n−1 − 4

)(
1− ∆2

∆2f2
2n + 4

)
=

x2 + 2

x3 + 3x
· l2m+1

l2m
;

∞∏
n=2

(
1 +

∆2

∆2f2
2n−1 − 4

)(
1− ∆2

∆2f2
2n + 4

)
=

x2 + 2

x3 + 3x
α(x);

∞∏
n=2

(
1 +

5

5F 2
2n−1 − 4

)(
1− 5

5F 2
2n + 4

)
=

3α

4
. (4.10)

It then follows from equations (4.8), (4.9), and (4.10) that

∞∏
n=2

[
1− 25

(5F 2
2n−1 − 4)2

] [
1− 25

(5F 2
2n + 4)2

]
=

9

112
α5.

Next, we find the Pell-Lucas consequences of formulas (4.1), (4.3), and (4.5).

4.2. Pell-Lucas Implications. Because qn(x) = ln(2x) and γ(x) = α(2x), it follows from
equations (4.1), (4.3), and (4.5) that

m∏
n=2

[
1− 16x2(x2 + 1)

q22n−1

]
=

x

4x3 + 3x
· q2m+1

q2m−1
;

m∏
n=2

[
1 +

16x2(x2 + 1)

q22n

]
=

2x2 + 1

8x4 + 8x2 + 1
· q2m+2

q2m
;

m∏
n=2

[
1 +

4(x2 + 1)

q22n−1

] [
1− 4(x2 + 1)

q22n

]
=

2x2 + 1

4x3 + 3x
· q2m+1

q2m
,

respectively.
It then follows that

m∏
n=2

(
1− 8

Q2
2n−1

)
=

1

7
· Q2m+1

Q2m−1
;

m∏
n=2

(
1 +

8

Q2
2n

)
=

3

17
· Q2m+2

Q2m
;

m∏
n=2

(
1 +

2

Q2
2n−1

)(
1− 2)

Q2
2n

]
=

3

7
· Q2m+1

Q2m
,
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respectively. In addition, we have
∞∏
n=2

[
1− 16x2(x2 + 1)

q22n−1

]
=

x

4x3 + 3x
γ2(x);

∞∏
n=2

[
1 +

16x2(x2 + 1)

q22n

]
=

2x2 + 1

8x4 + 8x2 + 1
γ2(x);

∞∏
n=2

[
1 +

4(x2 + 1)

q22n−1

] [
1− 4(x2 + 1)

q22n

]
=

2x2 + 1

4x3 + 3x
γ(x).
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